Weighted multi-level deep learning analysis and framework for processing
breast cancer WSIs
- URL: http://arxiv.org/abs/2106.14708v1
- Date: Mon, 28 Jun 2021 13:38:11 GMT
- Title: Weighted multi-level deep learning analysis and framework for processing
breast cancer WSIs
- Authors: Peter Bokor, Lukas Hudec, Ondrej Fabian, Wanda Benesova
- Abstract summary: We present a deep learning-based solution and framework for processing Whole Slide Images (WSI) based on a novel approach utilizing the advantages of image levels.
Our results demonstrate the profitability of global information with an increase of accuracy from 72.2% to 84.8%.
- Score: 0.10499611180329801
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prevention and early diagnosis of breast cancer (BC) is an essential
prerequisite for the selection of proper treatment. The substantial pressure
due to the increase of demand for faster and more precise diagnostic results
drives for automatic solutions. In the past decade, deep learning techniques
have demonstrated their power over several domains, and Computer-Aided (CAD)
diagnostic became one of them. However, when it comes to the analysis of Whole
Slide Images (WSI), most of the existing works compute predictions from levels
independently. This is, however, in contrast to the histopathologist expert
approach who requires to see a global architecture of tissue structures
important in BC classification.
We present a deep learning-based solution and framework for processing WSI
based on a novel approach utilizing the advantages of image levels. We apply
the weighing of information extracted from several levels into the final
classification of the malignancy. Our results demonstrate the profitability of
global information with an increase of accuracy from 72.2% to 84.8%.
Related papers
- UGPL: Uncertainty-Guided Progressive Learning for Evidence-Based Classification in Computed Tomography [0.0]
Current approaches typically process images uniformly, limiting their ability to detect localized abnormalities.<n>We introduce UGPL, an uncertainty-guided progressive learning framework that performs a global-to-local analysis.<n> Experiments across three CT datasets demonstrate that UGPL consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2025-07-18T17:30:56Z) - MIL vs. Aggregation: Evaluating Patient-Level Survival Prediction Strategies Using Graph-Based Learning [52.231128973251124]
We compare various strategies for predicting survival at the WSI and patient level.
The former treats each WSI as an independent sample, mimicking the strategy adopted in other works.
The latter comprises methods to either aggregate the predictions of the several WSIs or automatically identify the most relevant slide.
arXiv Detail & Related papers (2025-03-29T11:14:02Z) - TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
Topological data analysis offers a unique approach by extracting essential information through the evaluation of topological patterns across different color channels.
We show that the inclusion of topological features significantly improves the differentiation of tumor types in ovarian and breast cancers.
arXiv Detail & Related papers (2024-10-13T12:24:13Z) - Histo-Diffusion: A Diffusion Super-Resolution Method for Digital Pathology with Comprehensive Quality Assessment [6.350679043444348]
Histo-Diffusion is a novel diffusion-based method specially designed for generating and evaluating super-resolution images in digital pathology.
It includes a restoration module for histopathology prior and a controllable diffusion module for generating high-quality images.
arXiv Detail & Related papers (2024-08-27T17:31:00Z) - HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGym aims to foster whole slide image diagnosis by mimicking the real-life processes of doctors.
We offer various scenarios for different organs and cancers, including both WSI-based and selected region-based scenarios.
arXiv Detail & Related papers (2024-08-16T17:19:07Z) - Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning [46.75992018094998]
This research addresses the challenges of diagnosing chest X-rays (CXRs) at low resolutions.
High-resolution CXR imaging is crucial for identifying small but critical anomalies, such as nodules or opacities.
This paper presents the Multilevel Collaborative Attention Knowledge (MLCAK) method.
arXiv Detail & Related papers (2024-05-22T06:10:54Z) - Exploring Explainable AI Techniques for Improved Interpretability in Lung and Colon Cancer Classification [0.0]
Lung and colon cancer are serious worldwide health challenges that require early and precise identification to reduce mortality risks.
Histopathology remains the gold standard, although time-consuming and vulnerable to inter-observer mistakes.
Recent advances in deep learning have generated interest in its application to medical imaging analysis.
arXiv Detail & Related papers (2024-05-07T18:49:34Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network [12.161266795282915]
We propose a convolutional neural network (CNN)-based automatic classification method for accurate grading of prostate cancer (PCa) using whole slide histopathology images.
A data augmentation method named Patch-Based Image Reconstruction (PBIR) was proposed to reduce the high resolution and increase the diversity of WSIs.
A distribution correction module was developed to enhance the adaption of pretrained model to the target dataset.
arXiv Detail & Related papers (2020-11-29T06:42:08Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.