論文の概要: A geometric way to find the measures of uncertainty from statistical
divergences for discrete and finite probability distributions
- arxiv url: http://arxiv.org/abs/2106.14874v1
- Date: Mon, 28 Jun 2021 17:46:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 22:03:12.843470
- Title: A geometric way to find the measures of uncertainty from statistical
divergences for discrete and finite probability distributions
- Title(参考訳): 離散確率分布と有限確率分布の統計分岐からの不確かさの測度を求める幾何学的方法
- Authors: Gautam Sharma and Sk Sazim
- Abstract要約: 統計的発散の幾何学的性質をエクスプロイトし、離散確率分布と有限確率分布に対する関連する帰納的不確実性尺度を定義する方法を考案する。
量子状態の生成における不確実性を測定するために同様の手法を適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploiting the geometric nature of statistical divergences, we devise a way
to define associated induced uncertainty measures for discrete and finite
probability distributions. We also report new uncertainty measures and discuss
their properties. Further, we apply a similar technique to measure the
uncertainty in the preparation of a quantum state.
- Abstract(参考訳): 統計的発散の幾何学的性質を生かして,離散確率分布と有限確率分布に対する帰納的不確実性測度を定義する手法を考案する。
また、新たな不確実性対策を報告し、その特性について論じる。
さらに,量子状態の生成における不確実性を測定するために同様の手法を適用する。
関連論文リスト
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Label-wise Aleatoric and Epistemic Uncertainty Quantification [15.642370299038488]
本稿では,不確実性尺度のラベルワイズ分解に基づく分類タスクにおける不確実性定量化手法を提案する。
提案手法は,いくつかの望ましい特性に則っていることを示す。
論文 参考訳(メタデータ) (2024-06-04T14:33:23Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Probabilistic learning inference of boundary value problem with
uncertainties based on Kullback-Leibler divergence under implicit constraints [0.0]
本稿では,境界値問題に対する後続確率モデルを事前確率モデルから推定できる確率論的学習推定法を提案する。
制約を表す暗黙マッピングの統計的代理モデルを導入する。
第2部では、提案した理論を説明するために応用を提示し、また、不均一な線形弾性媒体の3次元均質化への寄与も示している。
論文 参考訳(メタデータ) (2022-02-10T16:00:10Z) - Non-Linear Spectral Dimensionality Reduction Under Uncertainty [107.01839211235583]
我々は、不確実性情報を活用し、いくつかの従来のアプローチを直接拡張する、NGEUと呼ばれる新しい次元削減フレームワークを提案する。
提案したNGEUの定式化は,大域的な閉形式解を示し,Radecherの複雑性に基づいて,基礎となる不確実性がフレームワークの一般化能力に理論的にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2022-02-09T19:01:33Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Divergence Frontiers for Generative Models: Sample Complexity,
Quantization Level, and Frontier Integral [58.434753643798224]
多様性フロンティアは生成モデルの評価フレームワークとして提案されている。
分岐フロンティアのプラグイン推定器のサンプル複雑性の非漸近的境界を確立する。
また,スムーズな分布推定器の統計的性能を調べることにより,分散フロンティアの枠組みも強化する。
論文 参考訳(メタデータ) (2021-06-15T06:26:25Z) - Characterizations of non-normalized discrete probability distributions
and their application in statistics [0.0]
これらの分布を識別する離散確率法則の質量関数について明示的な式を導出する。
我々の特徴づけ、従ってそれらの上に構築された応用は、確率法則の正規化定数に関する知識を一切必要としない。
論文 参考訳(メタデータ) (2020-11-09T12:08:12Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
既存の手法では、ターゲット推定における誤差を定量化できるが、過小評価する傾向がある。
本稿では,信号とその不確かさを推定するための新たな分離可能な定式化を提案し,オーバーフィッティングの影響を回避した。
提案手法は信号および不確実性推定のための最先端技術より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T12:11:27Z) - Geometric approach to quantum statistical inference [3.04585143845864]
仮説テストの量子統計的推論タスクとその正準変動について検討する。
データ推論問題に対する幾何学的アプローチに焦点をあて、上記の測度を正確に解釈することができる。
本稿では、量子パラメータ推定や「速度制限」、熱力学といった問題に対する幾何学的アプローチの例を論じる。
論文 参考訳(メタデータ) (2020-08-20T18:00:04Z) - Nonparametric Estimation of Uncertainty Sets for Robust Optimization [2.741266294612776]
本研究では、ロバスト最適化問題に対する不確実性集合構築のためのデータ駆動手法について検討する。
確率質量が与えられた目標質量に近似することが保証された不確実性集合を推定するための非パラメトリック手法を提供する。
論文 参考訳(メタデータ) (2020-04-07T01:47:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。