論文の概要: Improved Padding in CNNs for Quantitative Susceptibility Mapping
- arxiv url: http://arxiv.org/abs/2106.15331v1
- Date: Mon, 21 Jun 2021 01:35:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-04 19:45:12.756113
- Title: Improved Padding in CNNs for Quantitative Susceptibility Mapping
- Title(参考訳): 定量的サセプティビリティマッピングのためのCNNにおけるパディングの改善
- Authors: Juan Liu
- Abstract要約: ニューラルネットワークのボリューム境界における特徴写像の無効なボクセルを推定するために、隣接する有効なボクセルを利用する改良されたパディング手法を提案する。
シミュレーションおよびin-vivoデータを用いた研究により,提案パディングにより推定精度が大幅に向上し,背景フィールド除去,フィールド・ソース・インバージョン,シングルステップQSM再構成といったタスクにおける成果の成果が低減されることが示された。
- 参考スコア(独自算出の注目度): 5.421615560456378
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, deep learning methods have been proposed for quantitative
susceptibility mapping (QSM) data processing: background field removal,
field-to-source inversion, and single-step QSM reconstruction. However, the
conventional padding mechanism used in convolutional neural networks (CNNs) can
introduce spatial artifacts, especially in QSM background field removal and
single-step QSM which requires inference from total fields with extreme large
values at the edge boundaries of volume of interest. To address this issue, we
propose an improved padding technique which utilizes the neighboring valid
voxels to estimate the invalid voxels of feature maps at volume boundaries in
the neural networks. Studies using simulated and in-vivo data show that the
proposed padding greatly improves estimation accuracy and reduces artifacts in
the results in the tasks of background field removal, field-to-source
inversion, and single-step QSM reconstruction.
- Abstract(参考訳): 近年,背景領域の除去,フィールド・トゥ・ソース・インバージョン,単一ステップのQSM再構成など,QSMデータ処理のためのディープラーニング手法が提案されている。
しかしながら、畳み込みニューラルネットワーク(cnns)で使用される従来のパディング機構は、特にqsmバックグラウンドフィールドの削除や、関心量の境界で非常に大きな値を持つ全フィールドからの推論を必要とする1ステップのqsmにおいて、空間的アーティファクトを導入することができる。
そこで本研究では,隣接する有効ボクセルを用いて,ニューラルネットワークのボリューム境界における特徴マップの無効ボクセルを推定する改良パディング手法を提案する。
シミュレーションおよびin-vivoデータを用いた研究により,提案パディングにより推定精度が大幅に向上し,背景フィールド除去,フィールド・ソース・インバージョン,シングルステップQSM再構成といったタスクにおける成果の成果が削減された。
関連論文リスト
- DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - RecFNO: a resolution-invariant flow and heat field reconstruction method
from sparse observations via Fourier neural operator [8.986743262828009]
本稿では,RecFNOという優れた性能とメッシュ転送性を備えたエンド・ツー・エンドの物理場再構成手法を提案する。
提案手法は, スパース観測から無限次元空間における流れと熱場への写像を学習することを目的としている。
流体力学および熱力学に関する実験により,提案手法は既存のPOD法およびCNN法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-02-20T07:20:22Z) - Subject-specific quantitative susceptibility mapping using patch based
deep image priors [13.734472448148333]
そこで本研究では,被検者固有のパッチベースの教師なし学習アルゴリズムを提案し,その感受性マップを推定する。
我々は、深層畳み込みニューラルネットワークを用いて、地図のパッチにまたがる冗長性を利用して、問題をうまく解決する。
このアルゴリズムを3次元インビジョデータセットで検証し、競合する手法よりも改良された再構成を実証した。
論文 参考訳(メタデータ) (2022-10-10T02:28:53Z) - MA-RECON: Mask-aware deep-neural-network for robust fast MRI k-space
interpolation [3.0821115746307672]
低サンプリングkspaceデータからのMRI画像の高品質な再構成は、MRI取得時間を短縮し、時間分解能を向上するために重要である。
本稿では,マスク対応ディープニューラルネットワーク(DNN)アーキテクチャと関連するトレーニング手法であるMA-RECONを紹介する。
様々なアンダーサンプリングマスクで生成されたデータを活用して、アンダーサンプリングされたMRI再構成問題の一般化を刺激する。
論文 参考訳(メタデータ) (2022-08-31T15:57:38Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
本稿では,従来のSfM再構成と学習に基づく先行手法を併用した多視点深度推定手法を提案する。
提案手法は室内シーンにおける最先端手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-09-02T17:54:31Z) - Weakly-supervised Learning for Single-step Quantitative Susceptibility
Mapping [5.590406494337628]
我々は,BFRを使わずに全フィールドからQSMを直接再構築する,弱制御された単一ステップQSM再構成法wTFIを提案する。
wTFIは、BFR法RESHARPローカルフィールドを監督として、局所組織フィールドとQSMのマルチタスク学習を実行する。
我々は,wTFIが様々な状況下で高品質な局所場と感受性マップを生成可能であることを示す。
論文 参考訳(メタデータ) (2020-08-14T04:28:08Z) - Learned Proximal Networks for Quantitative Susceptibility Mapping [9.061630971752464]
本稿では,QSM双極子反転問題の解法として,Learned Proximal Convolutional Neural Network (LP-CNN)を提案する。
このフレームワークは、任意の位相入力測定を自然に処理できる最初のディープラーニングQSMアプローチであると考えられている。
論文 参考訳(メタデータ) (2020-08-11T22:35:24Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
ニューラルネットワークアーキテクチャの制約に基づく表現について検討する。
本稿では,いわゆるアーキテクチャ制約を満たすのに適した簡単な最適化手法について検討する。
論文 参考訳(メタデータ) (2020-02-18T16:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。