論文の概要: Short-Term Load Forecasting for Smart HomeAppliances with Sequence to
Sequence Learning
- arxiv url: http://arxiv.org/abs/2106.15348v1
- Date: Sat, 26 Jun 2021 02:21:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-30 15:14:50.226301
- Title: Short-Term Load Forecasting for Smart HomeAppliances with Sequence to
Sequence Learning
- Title(参考訳): シーケンス学習を用いたスマートホームアプリケーションのための短期負荷予測
- Authors: Mina Razghandi, Hao Zhou, Melike Erol-Kantarci, Damla Turgut
- Abstract要約: 本稿では,LSTMに基づくシーケンス・ツー・シーケンス(seq2seq)学習モデルを提案する。
提案手法を,VARMA,Dilated One dimensional Convolutional Neural Network,LSTMモデルという3つの手法と比較した。
その結果,LSTMをベースとしたSeq2seqモデルは,ほとんどの場合,予測誤差の点で他の手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 14.223968452923945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Appliance-level load forecasting plays a critical role in residential energy
management, besides having significant importance for ancillary services
performed by the utilities. In this paper, we propose to use an LSTM-based
sequence-to-sequence (seq2seq) learning model that can capture the load
profiles of appliances. We use a real dataset collected fromfour residential
buildings and compare our proposed schemewith three other techniques, namely
VARMA, Dilated One Dimensional Convolutional Neural Network, and an LSTM
model.The results show that the proposed LSTM-based seq2seq model outperforms
other techniques in terms of prediction error in most cases.
- Abstract(参考訳): 住宅エネルギー管理において,アプライアンスレベルの負荷予測が重要な役割を担っている。
本稿では,家電製品の負荷プロファイルをキャプチャするlstmベースのシーケンス・ツー・シーケンス(seq2seq)学習モデルを提案する。
我々は,4つの住宅から収集した実データを用いて,提案手法を,VARMA,Dilated One dimensional Convolutional Neural Network,LSTMモデルという3つの他の手法と比較した。
関連論文リスト
- Incorporating Arbitrary Matrix Group Equivariance into KANs [69.30866522377694]
Kolmogorov-Arnold Networks (KAN) は科学分野で大きな成功を収めている。
しかし、スプライン関数は、機械学習において重要な事前知識であるタスクの対称性を尊重しないかもしれない。
本研究では,Equivariant Kolmogorov-Arnold Networks (EKAN)を提案する。
論文 参考訳(メタデータ) (2024-10-01T06:34:58Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Contextually Enhanced ES-dRNN with Dynamic Attention for Short-Term Load
Forecasting [1.1602089225841632]
提案手法は,コンテキストトラックとメイントラックという,同時に訓練された2つのトラックから構成される。
RNNアーキテクチャは、階層的な拡張を積み重ねた複数の繰り返し層で構成され、最近提案された注意的再帰細胞を備えている。
このモデルは点予測と予測間隔の両方を生成する。
論文 参考訳(メタデータ) (2022-12-18T07:42:48Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Appliance Level Short-term Load Forecasting via Recurrent Neural Network [6.351541960369854]
本稿では,各家電の消費電力を効率よく予測するSTLFアルゴリズムを提案する。
提案手法は、ディープラーニングにおける強力なリカレントニューラルネットワーク(RNN)アーキテクチャに基づいている。
論文 参考訳(メタデータ) (2021-11-23T16:56:37Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
残りの設備の実用寿命(RUL)は、現在の時刻と故障までの期間として定義される。
マルチ層パーセプトロンと長期メモリ層(LSTM)に基づくエンドツーエンドのディープラーニングモデルを提案し、RULを予測する。
提案するエンド・ツー・エンドのモデルがこのような優れた結果を達成し、他のディープラーニングや最先端の手法と比較する方法について論じる。
論文 参考訳(メタデータ) (2021-04-11T16:45:18Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Compressing LSTM Networks by Matrix Product Operators [7.395226141345625]
Long Short Term Memory(LSTM)モデルは、多くの最先端自然言語処理(NLP)と音声強調(SE)アルゴリズムの構築ブロックである。
ここでは、量子多体物理学における量子状態の局所的相関を記述するMPO分解を紹介する。
LSTMモデルを置き換えるために,行列積演算子(MPO)に基づくニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-22T11:50:06Z) - Automatic Remaining Useful Life Estimation Framework with Embedded
Convolutional LSTM as the Backbone [5.927250637620123]
組込み畳み込みLSTM(E NeuralTM)と呼ばれる新しいLSTM変種を提案する。
ETMでは、異なる1次元の畳み込みの群がLSTM構造に埋め込まれている。
RUL推定のために広く用いられているいくつかのベンチマークデータセットに対する最先端のアプローチよりも,提案したEMMアプローチの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-10T08:34:20Z) - Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network
for Forecasting Network-wide Traffic State with Missing Values [23.504633202965376]
我々は、RNNベースのモデルに注目し、RNNとその変種を交通予測モデルに組み込む方法を再検討する。
トラフィック状態予測のためのニューラルネットワーク構造の設計を支援するために,スタック型双方向・一方向LSTMネットワークアーキテクチャ(SBU-LSTM)を提案する。
また,LSTM構造(LSTM-I)におけるデータ計算機構を提案する。
論文 参考訳(メタデータ) (2020-05-24T00:17:15Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
この研究は幅広いメタラーニングフレームワークを使って肯定的な証拠を提供する。
残余接続はメタラーニング適応機構として機能する。
我々は、ソースTSデータセット上でニューラルネットワークをトレーニングし、異なるターゲットTSデータセット上で再トレーニングすることなくデプロイできることを示します。
論文 参考訳(メタデータ) (2020-02-07T16:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。