論文の概要: Generalized Orthogonal Procrustes Problem under Arbitrary Adversaries
- arxiv url: http://arxiv.org/abs/2106.15493v3
- Date: Tue, 24 Dec 2024 06:53:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:52:20.920249
- Title: Generalized Orthogonal Procrustes Problem under Arbitrary Adversaries
- Title(参考訳): 任意条件下での一般化直交プロクリスト問題
- Authors: Shuyang Ling,
- Abstract要約: 半定値緩和法(SDR)と一般化パワー法(GPM)という反復法を用いて最小二乗推定値を求める。
さらに,低ランク因数分解アルゴリズムを解析し,対応する最適化環境が局所最小化器を含まないことを示す。
- 参考スコア(独自算出の注目度): 1.0152838128195467
- License:
- Abstract: The generalized orthogonal Procrustes problem (GOPP) plays a fundamental role in several scientific disciplines including statistics, imaging science and computer vision. Despite its tremendous practical importance, it is generally an NP-hard problem to find the least squares estimator. We study the semidefinite relaxation (SDR) and an iterative method named generalized power method (GPM) to find the least squares estimator, and investigate the performance under a signal-plus-noise model. We show that the SDR recovers the least squares estimator exactly and moreover the generalized power method with a proper initialization converges linearly to the global minimizer to the SDR, provided that the signal-to-noise ratio is large. The main technique follows from showing the nonlinear mapping involved in the GPM is essentially a local contraction mapping and then applying the well-known Banach fixed-point theorem finishes the proof. In addition, we analyze the low-rank factorization algorithm and show the corresponding optimization landscape is free of spurious local minimizers under nearly identical conditions that enables the success of SDR approach. The highlight of our work is that the theoretical guarantees are purely algebraic and do not assume any statistical priors of the additive adversaries, and thus it applies to various interesting settings.
- Abstract(参考訳): 一般化直交プロクリスト問題(GOPP)は統計学、画像科学、コンピュータビジョンなど、いくつかの科学分野において基本的な役割を担っている。
非常に実際的な重要性があるにもかかわらず、最小二乗推定器を見つけることは一般にNPハード問題である。
半定値緩和法(SDR)と一般化電力法(GPM)を用いて最小二乗推定器の探索を行い,信号+雑音モデルによる性能評価を行った。
信号対雑音比が大きい場合、SDRは最小二乗推定器を正確に復元し、適切な初期化を施した一般化電力法は、大域最小化器とSDRに線形に収束することを示した。
GPMに関わる非線形写像が本質的に局所縮約写像であることを示し、よく知られたバナッハの不動点定理を適用すると証明が終わる。
さらに,低ランク因数分解アルゴリズムを解析し,SDR手法を成功させるために,ほぼ同一条件下での局所最小化が不要であることを示す。
我々の研究のハイライトは、理論的な保証は純粋に代数的であり、加法的敵の統計的先行を前提とせず、様々な興味深い設定に当てはまることである。
関連論文リスト
- Alternating minimization for square root principal component pursuit [2.449191760736501]
平方根主成分探索(SRPCP)問題を解くための効率的なアルゴリズムを開発した。
具体的には、各反復が閉形式最適解を楽しむサブプロブレムを含む、チューニング不要な交互最小化(AltMin)アルゴリズムを提案する。
我々は,AltMin法をさらに加速するために,核ノルムの変分定式化とブラー・モンティロ分解に基づく手法を導入する。
論文 参考訳(メタデータ) (2024-12-31T14:43:50Z) - Distributionally Robust Optimization via Iterative Algorithms in Continuous Probability Spaces [6.992239210938067]
最短ケースの分布が連続している場合、分布的ロバストな最適化(DRO)によって動機付けられたミニマックス問題を考える。
最近の研究では、ニューラルネットワークに基づく生成ネットワークを用いた最悪のケース分布の学習について検討されている。
本稿では,そのようなミニマックス問題を解くための反復アルゴリズムを提案することによって,この理論的課題を橋渡しする。
論文 参考訳(メタデータ) (2024-12-29T19:31:23Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - On the Estimation Performance of Generalized Power Method for
Heteroscedastic Probabilistic PCA [21.9585534723895]
我々は,少なくとも幾何的にあるしきい値に束縛されたGPM間の適切な繰り返しを仮定すると,GPMは,ある「相対分解」の残余部分であるしきい値に減少することを示す。
そこで本研究では,PCA手法を用いて,ガウス以下の雑音設定による優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-06T11:41:17Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way partial AUC (OPAUC) と Two-way partial AUC (TPAUC) はバイナリ分類器の平均性能を測定する。
既存の手法のほとんどはPAUCをほぼ最適化するしかなく、制御不能なバイアスにつながる。
本稿では,分散ロバスト最適化AUCによるPAUC問題の簡易化について述べる。
論文 参考訳(メタデータ) (2022-10-08T08:26:22Z) - Lattice partition recovery with dyadic CART [79.96359947166592]
我々は、$d$次元格子上の加法ガウス雑音によって破損したピースワイド定値信号について検討する。
この形式のデータは、多くのアプリケーションで自然に発生し、統計処理や信号処理の文献において、信号の検出やテスト、ノイズの除去、推定といったタスクが広く研究されている。
本稿では,未知の信号の一貫性領域によって誘導される格子の分割を推定する,分割回復の問題について考察する。
我々は、DCARTベースの手順が、下位分割を$sigma2 k*の順序で一貫して推定することを証明した。
論文 参考訳(メタデータ) (2021-05-27T23:41:01Z) - A Retrospective Approximation Approach for Smooth Stochastic
Optimization [0.2867517731896504]
グラディエント(グラディエント、英: Gradient、SG)とは、最適化(SO)問題をスムーズ(ノンフィクション)な目標値で解くための補足的反復手法である。
論文 参考訳(メタデータ) (2021-03-07T16:29:36Z) - Continuous Wasserstein-2 Barycenter Estimation without Minimax
Optimization [94.18714844247766]
ワッサーシュタイン・バリセンターは、最適輸送に基づく確率測度の重み付き平均の幾何学的概念を提供する。
本稿では,Wasserstein-2 バリセンタのサンプルアクセスを演算するスケーラブルなアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-02T21:01:13Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
射影ロバスト(PR)OTは、2つの測度の間のOTコストを最大化するために、射影可能な$k$次元部分空間を選択する。
私たちの最初の貢献は、PRワッサーシュタイン距離のいくつかの基本的な統計的性質を確立することである。
次に、部分空間を最適化するのではなく平均化することにより、PRW距離の代替として積分PRワッサーシュタイン距離(IPRW)を提案する。
論文 参考訳(メタデータ) (2020-06-22T14:35:33Z) - Fundamental Limits of Ridge-Regularized Empirical Risk Minimization in
High Dimensions [41.7567932118769]
経験的リスク最小化アルゴリズムは、様々な推定や予測タスクで広く利用されている。
本稿では,コンベックスEMMの統計的精度に関する基礎的限界を推論のために初めて特徴づける。
論文 参考訳(メタデータ) (2020-06-16T04:27:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。