Charge-Noise Insensitive Chiral Photonic Interface for Waveguide Circuit
QED
- URL: http://arxiv.org/abs/2106.15744v2
- Date: Wed, 1 Dec 2021 13:48:51 GMT
- Title: Charge-Noise Insensitive Chiral Photonic Interface for Waveguide Circuit
QED
- Authors: Yu-Xiang Zhang, Carles R. i Carceller, Morten Kjaergaard, Anders S.
S{\o}rensen
- Abstract summary: An on-chip compatible chiral interface is attractive for both fundamental studies of light-matter interactions and applications to quantum information processing.
We propose such a chiral interface based on superconducting circuits, which has wide bandwidth, rich tunability, and high tolerance to fabrication variations.
The proposed interface can be extended to realize a broadband fully passive on-chip circulator for microwave photons.
- Score: 6.422921106366847
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A chiral photonic interface is a quantum system that has different
probabilities for emitting photons to the left and right. An on-chip compatible
chiral interface is attractive for both fundamental studies of light-matter
interactions and applications to quantum information processing. We propose
such a chiral interface based on superconducting circuits, which has wide
bandwidth, rich tunability, and high tolerance to fabrication variations. The
proposed interface consists of a core that uses Cooper-pair boxes (CPBs) to
break time-reversal symmetry, and two superconducting transmons that connect
the core to a waveguide in the manner reminiscent of a ``giant atom.'' The
transmons form a state decoupled from the core, akin to dark states of atomic
physics, rendering the whole interface insensitive to the CPB charge noise. The
proposed interface can be extended to realize a broadband fully passive on-chip
circulator for microwave photons.
Related papers
- A scalable cavity-based spin-photon interface in a photonic integrated
circuit [0.15178488157371034]
We show integration of nanophotonic cavities containing tin-vacancy (SnV) centers in a photonic integrated circuit (PIC)
We find with near-term improvements this multiplexed architecture can enable high-fidelity quantum state transfer.
arXiv Detail & Related papers (2024-02-28T05:26:32Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Strong hole-photon coupling in planar Ge: probing the charge degree and
Wigner molecule states [0.0]
We present strong coupling between a hole charge qubit and microwave photons in a superconducting quantum interference device (SQUID) array resonator.
This work paves the way towards coherent quantum connections between remote hole qubits in planar Ge, required to scale up hole-based quantum processors.
arXiv Detail & Related papers (2023-10-31T17:27:46Z) - Modular chip-integrated photonic control of artificial atoms in diamond
nanostructures [0.0]
Atom-like emitters in diamond have emerged as a leading system for optically networked quantum memories.
We introduce a modular architecture of piezoelectrically-actuated atom-control PICs and artificial atoms embedded in diamond nanostructures.
arXiv Detail & Related papers (2023-01-09T21:49:44Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - On-Demand Directional Microwave Photon Emission Using Waveguide Quantum
Electrodynamics [38.42250061908039]
We demonstrate high-fidelity, on-demand, directional, microwave photon emission.
We do this using an artificial molecule comprising two superconducting qubits strongly coupled to a bidirectional waveguide.
This circuit will also be capable of photon absorption, making it suitable for building interconnects within quantum networks.
arXiv Detail & Related papers (2022-03-02T21:45:00Z) - A new concept for design of photonic integrated circuits with the
ultimate density and low loss [62.997667081978825]
We propose a new concept for design of PICs with the ultimate downscaling capability, the absence of geometric loss and a high-fidelity throughput.
This is achieved by a periodic continuous-time quantum walk of photons through waveguide arrays.
We demonstrate the potential of the new concept by reconsidering the design of basic building blocks of the information and sensing systems.
arXiv Detail & Related papers (2021-08-02T14:23:18Z) - Chiral Quantum Network with Giant Atoms [7.33811357166334]
In superconducting quantum circuits (SQCs), chiral routing quantum information is often realized with the ferrite circulators.
We propose a novel method to realize chiral quantum networks by exploiting giant atom effects in SQC platforms.
arXiv Detail & Related papers (2021-06-24T17:08:49Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.