論文の概要: Predicting quantum dynamical cost landscapes with deep learning
- arxiv url: http://arxiv.org/abs/2107.00008v2
- Date: Wed, 14 Jul 2021 13:04:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 07:53:07.014977
- Title: Predicting quantum dynamical cost landscapes with deep learning
- Title(参考訳): ディープラーニングによる量子力学コスト景観の予測
- Authors: Mogens Dalgaard, Felix Motzoi, and Jacob Sherson
- Abstract要約: コスト関数型ランドスケープの深層学習に基づくモデリングを導入する。
我々は、最先端のベイズ法よりも精度と速度が桁違いに向上することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art quantum algorithms routinely tune dynamically parametrized
cost functionals for combinatorics, machine learning, equation-solving, or
energy minimization. However, large search complexity often demands many
(noisy) quantum measurements, leading to the increasing use of classical
probability models to estimate which areas in the cost functional landscape are
of highest interest. Introducing deep learning based modelling of the
landscape, we demonstrate an order of magnitude increases in accuracy and speed
over state-of-the-art Bayesian methods. Moreover, once trained the deep neural
network enables the extraction of information at a much faster rate than
conventional numerical simulation. This allows for on-the-fly experimental
optimizations and detailed classification of complexity and navigability
throughout the phase diagram of the landscape.
- Abstract(参考訳): 最先端の量子アルゴリズムは、組合せ論、機械学習、方程式解法、エネルギー最小化のための動的パラメータ化されたコスト関数をルーチン的に調整する。
しかし、大規模な探索複雑性は、しばしば多くの(ノイズの多い)量子測度を必要とするため、コスト関数ランドスケープのどの領域が最も関心があるかを推定するために古典的確率モデルの利用が増加する。
ランドスケープの深層学習に基づくモデリングを導入し、最先端のベイズ法よりも精度と速度が大きく向上することを示した。
さらに、訓練されたディープニューラルネットワークは、従来の数値シミュレーションよりもはるかに速い速度で情報を抽出することができる。
これにより、オンザフライの実験的な最適化と、景観の位相図全体の複雑さとナビゲータビリティの詳細な分類が可能になる。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - Neural Architecture Codesign for Fast Bragg Peak Analysis [1.7081438846690533]
我々は,高速かつリアルタイムなブラッグピーク解析のためのニューラルネットワーク符号の合理化のための自動パイプラインを開発した。
我々の手法では、ハードウェアコストを含むこれらのモデルを強化するために、ニューラルアーキテクチャ検索とAutoMLを使用し、よりハードウェア効率の良いニューラルアーキテクチャの発見に繋がる。
論文 参考訳(メタデータ) (2023-12-10T19:42:18Z) - Generative modeling of time-dependent densities via optimal transport
and projection pursuit [3.069335774032178]
本稿では,時間的モデリングのための一般的なディープラーニングアルゴリズムの代替として,安価に提案する。
我々の手法は最先端の解法と比較して非常に競争力がある。
論文 参考訳(メタデータ) (2023-04-19T13:50:13Z) - Classical simulation of short-time quantum dynamics [0.0]
局所観測可能量と非局所量のダイナミクスを近似する古典的アルゴリズムを提案する。
我々は、新しい量子速度限界、動的相転移の束縛、および製品状態の束縛された濃度を短期間に発展させた。
論文 参考訳(メタデータ) (2022-10-20T18:00:04Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Physics-informed Deep Super-resolution for Spatiotemporal Data [18.688475686901082]
ディープ・ラーニングは、粗い粒度のシミュレーションに基づいて科学的データを増やすのに使うことができる。
物理インフォームドラーニングにインスパイアされた、豊かで効率的な時間的超解像フレームワークを提案する。
その結果,提案手法の有効性と効率が,ベースラインアルゴリズムと比較して優れていることが示された。
論文 参考訳(メタデータ) (2022-08-02T13:57:35Z) - Simulation Paths for Quantum Circuit Simulation with Decision Diagrams [72.03286471602073]
決定図を用いて量子回路をシミュレートする際に選択される経路の重要性について検討する。
我々は、専用のシミュレーションパスを調査できるオープンソースのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-01T19:00:11Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。