論文の概要: Mesh-based graph convolutional neural network models of processes with
complex initial states
- arxiv url: http://arxiv.org/abs/2107.00090v1
- Date: Fri, 4 Jun 2021 03:40:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-05 01:02:32.281678
- Title: Mesh-based graph convolutional neural network models of processes with
complex initial states
- Title(参考訳): メッシュに基づく複雑な初期状態をもつプロセスの畳み込みニューラルネットワークモデル
- Authors: Ari Frankel and Cosmin Safta and Coleman Alleman and Reese Jones
- Abstract要約: セグメント化やクラスタリングなしに,初期構造の離散化表現を直接利用するグラフ畳み込みニューラルネットワークを提案する。
提案するネットワークの性能を実証し、従来のピクセルベースの畳み込みニューラルネットワークモデルと3つの大きなデータセット上の特徴ベースの畳み込みニューラルネットワークと比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Predicting the evolution of a representative sample of a material with
microstructure is a fundamental problem in homogenization. In this work we
propose a graph convolutional neural network that utilizes the discretized
representation of the initial microstructure directly, without segmentation or
clustering. Compared to feature-based and pixel-based convolutional neural
network models, the proposed method has a number of advantages: (a) it is deep
in that it does not require featurization but can benefit from it, (b) it has a
simple implementation with standard convolutional filters and layers, (c) it
works natively on unstructured and structured grid data without interpolation
(unlike pixel-based convolutional neural networks), and (d) it preserves
rotational invariance like other graph-based convolutional neural networks. We
demonstrate the performance of the proposed network and compare it to
traditional pixel-based convolution neural network models and feature-based
graph convolutional neural networks on three large datasets.
- Abstract(参考訳): ミクロ構造を持つ材料の代表試料の進化を予測することは、均質化の根本的な問題である。
本研究では,セグメント化やクラスタリングを伴わずに,初期微細構造の離散表現を直接利用するグラフ畳み込みニューラルネットワークを提案する。
Compared to feature-based and pixel-based convolutional neural network models, the proposed method has a number of advantages: (a) it is deep in that it does not require featurization but can benefit from it, (b) it has a simple implementation with standard convolutional filters and layers, (c) it works natively on unstructured and structured grid data without interpolation (unlike pixel-based convolutional neural networks), and (d) it preserves rotational invariance like other graph-based convolutional neural networks.
提案ネットワークの性能を実証し,従来の画素型畳み込みニューラルネットワークモデルおよび3つの大規模データセット上の特徴型グラフ畳み込みニューラルネットワークと比較する。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Parameter Convex Neural Networks [13.42851919291587]
本研究では,ある条件下でのニューラルネットワークのパラメータに関して凸である指数的多層ニューラルネットワーク(EMLP)を提案する。
後期実験では,指数グラフ畳み込みネットワーク(EGCN)を同じアーキテクチャで構築し,グラフ分類データセット上で実験を行う。
論文 参考訳(メタデータ) (2022-06-11T16:44:59Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - A Sparse Coding Interpretation of Neural Networks and Theoretical
Implications [0.0]
深層畳み込みニューラルネットワークは、様々なコンピュータビジョンタスクにおいて前例のない性能を達成した。
本稿では、ReLUアクティベーションを持つニューラルネットワークのスパース符号化解釈を提案する。
正規化やプーリングなしに完全な畳み込みニューラルネットワークを導出する。
論文 参考訳(メタデータ) (2021-08-14T21:54:47Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
本稿では,グラフ畳み込み層のみを利用するGCHPという単純なグラフベースのネットワーク構造を提案する。
我々は,GCHPがトレーニング時間を大幅に短縮し,時間間確率仮定による確率比損失がモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2021-07-07T16:59:14Z) - Lookup subnet based Spatial Graph Convolutional neural Network [3.119764474774276]
本研究では,CNNを非ユークリッド領域に自然に一般化するクロス相関グラフ畳み込み法を提案する。
提案手法は,3つの確立されたグラフベンチマークにおいて,最先端の実績を達成あるいは一致させた。
論文 参考訳(メタデータ) (2021-02-04T13:05:30Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Research on a New Convolutional Neural Network Model Combined with
Random Edges Adding [10.519799195357209]
畳み込みニューラルネットワークモデルの性能向上のために,ランダムエッジ付加アルゴリズムを提案する。
シミュレーションの結果, モデル認識精度とトレーニング収束速度は, 再構成モデルのランダムエッジ付加により大幅に向上することがわかった。
論文 参考訳(メタデータ) (2020-03-17T16:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。