論文の概要: Distributed Nonparametric Function Estimation: Optimal Rate of
Convergence and Cost of Adaptation
- arxiv url: http://arxiv.org/abs/2107.00179v1
- Date: Thu, 1 Jul 2021 02:16:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-03 01:48:59.878333
- Title: Distributed Nonparametric Function Estimation: Optimal Rate of
Convergence and Cost of Adaptation
- Title(参考訳): 分散非パラメトリック関数推定:最適収束率と適応コスト
- Authors: T. Tony Cai and Hongji Wei
- Abstract要約: 通信制約下での分散ミニマックス推定と分散適応推定について検討した。
適応のための正確な通信コストを定量化し、分散推定のための最適な適応手順を構築する。
- 参考スコア(独自算出の注目度): 1.332560004325655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distributed minimax estimation and distributed adaptive estimation under
communication constraints for Gaussian sequence model and white noise model are
studied. The minimax rate of convergence for distributed estimation over a
given Besov class, which serves as a benchmark for the cost of adaptation, is
established. We then quantify the exact communication cost for adaptation and
construct an optimally adaptive procedure for distributed estimation over a
range of Besov classes. The results demonstrate significant differences between
nonparametric function estimation in the distributed setting and the
conventional centralized setting. For global estimation, adaptation in general
cannot be achieved for free in the distributed setting. The new technical tools
to obtain the exact characterization for the cost of adaptation can be of
independent interest.
- Abstract(参考訳): ガウス列モデルとホワイトノイズモデルの通信制約下での分散ミニマックス推定と分散適応推定について検討した。
適応コストのベンチマークとして機能する与えられたベッソフクラス上での分散推定のための最小収束率を定式化する。
次に、適応のための正確な通信コストを定量化し、様々なベッソフクラスにまたがる分散推定のための最適な適応手順を構築する。
その結果,分散設定における非パラメトリック関数推定と従来の集中型設定との間に有意な差が認められた。
グローバルな推定では、分散環境では一般に適応は無償では達成できない。
適応コストの正確な特徴を得るための新しい技術ツールは、独立した興味を持つことができる。
関連論文リスト
- Adaptive Refinement Protocols for Distributed Distribution Estimation under $\ell^p$-Losses [9.766173684831324]
通信制約のある$ellp$損失の離散分布の推定を考える。
我々は、ほとんどのパラメーター系における問題の最小値の最適値を得る。
論文 参考訳(メタデータ) (2024-10-09T13:46:08Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
オンライン報酬指標の偏りのないオフライン推定を最適化する意思決定ポリシーを学習することを目指している。
学習シナリオにおける同値性に基づく単一のフレームワークを提案する。
我々のフレームワークは、分散最適非バイアス推定器の特徴付けを可能にし、それに対する閉形式解を提供する。
論文 参考訳(メタデータ) (2024-05-09T12:52:22Z) - Nearest Neighbor Sampling for Covariate Shift Adaptation [7.940293148084844]
重みを推定しない新しい共変量シフト適応法を提案する。
基本的な考え方は、ソースデータセットの$k$-nearestの隣人によってラベル付けされたラベル付けされていないターゲットデータを直接扱うことだ。
実験の結果, 走行時間を大幅に短縮できることがわかった。
論文 参考訳(メタデータ) (2023-12-15T17:28:09Z) - Adaptive importance sampling for heavy-tailed distributions via
$\alpha$-divergence minimization [2.879807093604632]
提案手法は,学生の提案分布からターゲットを近似するAISアルゴリズムを提案する。
我々は、目標と提案の護衛モーメントを一致させて、位置とスケールパラメータを適応させる。
これらの更新は、ターゲットと提案の間の$alpha$-divergenceを最小化し、変動推論と接続する。
論文 参考訳(メタデータ) (2023-10-25T14:07:08Z) - Statistical Limits of Adaptive Linear Models: Low-Dimensional Estimation
and Inference [5.924780594614676]
データの任意適応が許された場合、単一の座標を推定する誤差を$sqrtd$の倍にすることができる。
2段階適応線形推定方程式(TALE)を解くことにより,単一座標推定のための新しい推定器を提案する。
論文 参考訳(メタデータ) (2023-10-01T00:45:09Z) - Adaptive Ensemble Q-learning: Minimizing Estimation Bias via Error
Feedback [31.115084475673793]
アンサンブル法はQ-ラーニングにおける過大評価問題を緩和するための有望な方法である。
推定バイアスはアンサンブルサイズに大きく依存していることが知られている。
本研究では, (a) アンサンブルサイズを柔軟に制御するためのフィードバックとなる近似誤差特性と, (b) 推定バイアスを最小化するためのアンサンブルサイズ適応の2つの重要なステップを考案する。
論文 参考訳(メタデータ) (2023-06-20T22:06:14Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Quantization for decentralized learning under subspace constraints [61.59416703323886]
エージェントがサブスペース制約を最小化するために個々のコスト関数を持つ分散最適化問題を考察する。
本稿では,エージェントが確率化量子化器を用いて推定値を圧縮する適応分散型戦略を提案し,検討する。
この分析は、量子化ノイズのいくつかの一般的な条件下では、平均二乗誤差と平均ビットレートの両方で戦略が安定であることを示している。
論文 参考訳(メタデータ) (2022-09-16T09:38:38Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。