Quantum Multiple-Valued Decision Diagrams in Graphical Calculi
- URL: http://arxiv.org/abs/2107.01186v1
- Date: Fri, 2 Jul 2021 16:50:11 GMT
- Title: Quantum Multiple-Valued Decision Diagrams in Graphical Calculi
- Authors: Renaud Vilmart
- Abstract summary: We show how to turn a QMDD into an equivalent ZH-diagram, and vice-versa.
This allows tools from one formalism to be used into the other.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphical calculi such as the ZH-calculus are powerful tools in the study and
analysis of quantum processes, with links to other models of quantum
computation such as quantum circuits, measurement-based computing, etc.
A somewhat compact but systematic way to describe a quantum process is
through the use of quantum multiple-valued decision diagrams (QMDDs), which
have already been used for the synthesis of quantum circuits as well as for
verification.
We show in this paper how to turn a QMDD into an equivalent ZH-diagram, and
vice-versa, and show how reducing a QMDD translates in the ZH-Calculus, hence
allowing tools from one formalism to be used into the other.
Related papers
- Equivalence Checking of Quantum Circuits by Model Counting [0.0]
This paper gives a Turing reduction of the (universal) quantum circuits equivalence problem to weighted model counting (WMC)
With an open-source implementation, we demonstrate that this novel approach can outperform a state-of-the-art equivalence-checking tool based on ZX calculus and decision diagrams.
arXiv Detail & Related papers (2024-03-27T17:58:20Z) - Efficient Quantum Modular Arithmetics for the ISQ Era [0.0]
This study presents an array of quantum circuits, each precision-engineered for modular arithmetic functions.
We provide a theoretical framework and practical implementations in the PennyLane quantum software.
arXiv Detail & Related papers (2023-11-14T21:34:39Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Equivalence Checking of Quantum Circuits with the ZX-Calculus [3.610459670994051]
State-of-the-art quantum computers are capable of running increasingly complex algorithms.
The need for automated methods to design and test potential applications rises.
Recently, new methods have been proposed that tackle this problem.
arXiv Detail & Related papers (2022-08-26T18:00:01Z) - Quantum Volume for Photonic Quantum Processors [15.3862808585761]
Defining metrics for near-term quantum computing processors has been an integral part of the quantum hardware research and development efforts.
Most metrics such as randomized benchmarking and quantum volume were originally introduced for circuit-based quantum computers.
We present a framework to map physical noises and imperfections in MBQC processes to logical errors in equivalent quantum circuits.
arXiv Detail & Related papers (2022-08-24T18:05:16Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - QZNs: Quantum Z-numbers [3.997680012976965]
We propose quantum Z-numbers (QZNs), which are the quantum generalization of Z-numbers.
Based on QZNs, a novel quantum multi-attributes decision making (MADM) algorithm is proposed and applied in medical diagnosis.
arXiv Detail & Related papers (2021-04-12T04:04:05Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.