論文の概要: Learning Delaunay Triangulation using Self-attention and Domain
Knowledge
- arxiv url: http://arxiv.org/abs/2107.01759v1
- Date: Mon, 5 Jul 2021 01:56:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 23:08:40.702336
- Title: Learning Delaunay Triangulation using Self-attention and Domain
Knowledge
- Title(参考訳): 自己意識とドメイン知識を用いたDlaunay Triangulationの学習
- Authors: Jaeseung Lee, Woojin Choi, Jibum Kim
- Abstract要約: 本稿では,自己意識とドメイン知識に基づく新たな注意機構を用いて,Delaunay三角測量学習のためのディープラーニングに基づく新しいアプローチを提案する。
提案したニューラルネットモデルが十分に訓練されている場合、入力点集合に対するデラウネー三角法を自動的に予測するため、単純かつ効率的である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Delaunay triangulation is a well-known geometric combinatorial optimization
problem with various applications. Many algorithms can generate Delaunay
triangulation given an input point set, but most are nontrivial algorithms
requiring an understanding of geometry or the performance of additional
geometric operations, such as the edge flip. Deep learning has been used to
solve various combinatorial optimization problems; however, generating Delaunay
triangulation based on deep learning remains a difficult problem, and very few
research has been conducted due to its complexity. In this paper, we propose a
novel deep-learning-based approach for learning Delaunay triangulation using a
new attention mechanism based on self-attention and domain knowledge. The
proposed model is designed such that the model efficiently learns
point-to-point relationships using self-attention in the encoder. In the
decoder, a new attention score function using domain knowledge is proposed to
provide a high penalty when the geometric requirement is not satisfied. The
strength of the proposed attention score function lies in its ability to extend
its application to solving other combinatorial optimization problems involving
geometry. When the proposed neural net model is well trained, it is simple and
efficient because it automatically predicts the Delaunay triangulation for an
input point set without requiring any additional geometric operations. We
conduct experiments to demonstrate the effectiveness of the proposed model and
conclude that it exhibits better performance compared with other
deep-learning-based approaches.
- Abstract(参考訳): delaunay三角測量は様々な応用でよく知られた幾何学的組合せ最適化問題である。
多くのアルゴリズムは入力点集合からデラウネー三角関数を生成することができるが、ほとんどのアルゴリズムは幾何学の理解を必要とする非自明なアルゴリズムである。
深層学習は様々な組合せ最適化問題を解くために用いられてきたが、深層学習に基づくデラウネー三角測量の生成は難しい問題であり、その複雑さから研究はごくわずかである。
本稿では,自己注意とドメイン知識に基づく新しい注意機構を用いて,dlaunay三角測量を学習するための新しいディープラーニング手法を提案する。
提案モデルは,エンコーダ内の自己照準を用いて,ポイント・ツー・ポイント関係を効率的に学習するように設計されている。
このデコーダでは、幾何学的要件が満たされない場合に高いペナルティを与えるために、ドメイン知識を用いた新たな注目スコア関数を提案する。
提案した注目スコア関数の強みは、その応用を幾何学を含む他の組合せ最適化問題に拡張する能力にある。
提案するニューラルネットモデルが十分に訓練されている場合、追加の幾何演算を必要とせずに入力点集合のドローネー三角測量を自動的に予測するので、単純かつ効率的である。
提案手法の有効性を実証するために実験を行い,他の深層学習手法と比較して優れた性能を示した。
関連論文リスト
- Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - Geometrically Inspired Kernel Machines for Collaborative Learning Beyond Gradient Descent [36.59087823764832]
本稿では,幾何学的にインスパイアされたカーネルマシンを用いた協調学習のための新しい数学的枠組みを開発する。
分類問題に対しては、与えられたデータ点の周りの有界な幾何学構造を学習することができる。
論文 参考訳(メタデータ) (2024-07-05T08:20:27Z) - A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems [0.0]
本研究は、複雑な物理系を管理する時間領域偏微分方程式(PDE)の数値解析を高速化するための新しいアプローチを導入する。
この手法は、古典的低次モデリング(ROM)フレームワークと最近のパラメトリックグラフニューラルネットワーク(GNN)の組み合わせに基づいている。
論文 参考訳(メタデータ) (2024-06-03T08:51:25Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Probabilistic partition of unity networks for high-dimensional
regression problems [1.0227479910430863]
我々は高次元回帰問題におけるユニタリネットワーク(PPOU-Net)モデルの分割について検討する。
本稿では適応次元の減少に着目した一般的な枠組みを提案する。
PPOU-Netsは、数値実験において、同等の大きさのベースライン完全接続ニューラルネットワークを一貫して上回っている。
論文 参考訳(メタデータ) (2022-10-06T06:01:36Z) - Geometric Methods for Sampling, Optimisation, Inference and Adaptive
Agents [102.42623636238399]
我々は,サンプリング,最適化,推論,適応的意思決定といった問題に根ざした基本的な幾何学的構造を同定する。
これらの問題を効率的に解くためにこれらの幾何学的構造を利用するアルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-03-20T16:23:17Z) - Hybrid neural network reduced order modelling for turbulent flows with
geometric parameters [0.0]
本稿では,幾何的パラメータ化不可能な乱流Navier-Stokes問題の解法として,古典的ガレルキン射影法とデータ駆動法を併用して,多目的かつ高精度なアルゴリズムを提案する。
本手法の有効性は,古典学のバックステップ問題と形状変形Ahmed体応用の2つの異なるケースで実証された。
論文 参考訳(メタデータ) (2021-07-20T16:06:18Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
本稿では,より広い範囲の最適化問題を含むサドル点問題に対して,PFLを初めて検討した。
この問題に対処するための新しいアルゴリズムを提案し、滑らかな(強く)凸-(強く)凹点問題を理論的に解析する。
両線形問題に対する数値実験と, 対向雑音を有するニューラルネットワークは, 提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-14T10:36:25Z) - Fusing the Old with the New: Learning Relative Camera Pose with
Geometry-Guided Uncertainty [91.0564497403256]
本稿では,ネットワークトレーニング中の2つの予測系間の確率的融合を含む新しい枠組みを提案する。
本ネットワークは,異なる対応間の強い相互作用を強制することにより学習を駆動する自己追跡グラフニューラルネットワークを特徴とする。
学習に適したモーションパーマリゼーションを提案し、難易度の高いDeMoNおよびScanNetデータセットで最新のパフォーマンスを達成できることを示します。
論文 参考訳(メタデータ) (2021-04-16T17:59:06Z) - Isometric Multi-Shape Matching [50.86135294068138]
形状間の対応を見つけることは、コンピュータビジョンとグラフィックスの基本的な問題である。
アイソメトリーは形状対応問題においてしばしば研究されるが、マルチマッチング環境では明確には考慮されていない。
定式化を解くのに適した最適化アルゴリズムを提案し,コンバージェンスと複雑性解析を提供する。
論文 参考訳(メタデータ) (2020-12-04T15:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。