論文の概要: A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems
- arxiv url: http://arxiv.org/abs/2406.02615v1
- Date: Mon, 3 Jun 2024 08:51:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:29:51.884895
- Title: A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems
- Title(参考訳): 非パラメトリックな測地に対する低次モデリングとグラフニューラルネットワークのハイブリッド数値解法結合:構造力学問題への応用
- Authors: Victor Matray, Faisal Amlani, Frédéric Feyel, David Néron,
- Abstract要約: 本研究は、複雑な物理系を管理する時間領域偏微分方程式(PDE)の数値解析を高速化するための新しいアプローチを導入する。
この手法は、古典的低次モデリング(ROM)フレームワークと最近のパラメトリックグラフニューラルネットワーク(GNN)の組み合わせに基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work introduces a new approach for accelerating the numerical analysis of time-domain partial differential equations (PDEs) governing complex physical systems. The methodology is based on a combination of a classical reduced-order modeling (ROM) framework and recently-introduced Graph Neural Networks (GNNs), where the latter is trained on highly heterogeneous databases of varying numerical discretization sizes. The proposed techniques are shown to be particularly suitable for non-parametric geometries, ultimately enabling the treatment of a diverse range of geometries and topologies. Performance studies are presented in an application context related to the design of aircraft seats and their corresponding mechanical responses to shocks, where the main motivation is to reduce the computational burden and enable the rapid design iteration for such problems that entail non-parametric geometries. The methods proposed here are straightforwardly applicable to other scientific or engineering problems requiring a large number of finite element-based numerical simulations, with the potential to significantly enhance efficiency while maintaining reasonable accuracy.
- Abstract(参考訳): 本研究は、複雑な物理系を管理する時間領域偏微分方程式(PDE)の数値解析を高速化するための新しいアプローチを導入する。
この手法は、古典的な低次モデリング(ROM)フレームワークと最近導入されたグラフニューラルネットワーク(GNN)の組み合わせに基づいている。
提案手法は非パラメトリックなジオメトリに特に適しており、最終的には多様なジオメトリやトポロジーを扱えることが示されている。
航空機の座席の設計およびそれに対応する衝撃に対する機械的応答に関する応用文脈において,性能研究は計算負荷を低減し,非パラメトリックな測地を伴わない問題に対する迅速な設計イテレーションを可能にすることが主な動機である。
提案手法は, 有限要素に基づく数値シミュレーションを多数必要とする他の科学的・工学的な問題にも適用可能である。
関連論文リスト
- A Survey of Geometric Graph Neural Networks: Data Structures, Models and
Applications [67.33002207179923]
本稿では、幾何学的GNNに関するデータ構造、モデル、および応用について調査する。
幾何学的メッセージパッシングの観点から既存のモデルの統一的なビューを提供する。
また、方法論開発と実験評価の後の研究を促進するために、アプリケーションと関連するデータセットを要約する。
論文 参考訳(メタデータ) (2024-03-01T12:13:04Z) - Physics-informed neural networks for transformed geometries and
manifolds [0.0]
本稿では,幾何学的変分を頑健に適合させるために,PINN内に幾何変換を統合する新しい手法を提案する。
従来のPINNに対して,特に幾何学的変動下での柔軟性の向上を実証する。
提案したフレームワークは、パラメータ化されたジオメトリ上でのディープ・ニューラル演算子のトレーニングの展望を示す。
論文 参考訳(メタデータ) (2023-11-27T15:47:33Z) - Physics-Informed Graph Convolutional Networks: Towards a generalized
framework for complex geometries [0.0]
偏微分方程式の解法としてグラフニューラルネットワークを用いることを正当化する。
古典的数値解法と物理インフォームド・フレームワークを組み合わせることで、別の手法を提案する。
本稿では,不規則な幾何学上の3次元問題に対して検証を行う手法を提案する。
論文 参考訳(メタデータ) (2023-10-20T09:46:12Z) - Slow Invariant Manifolds of Singularly Perturbed Systems via
Physics-Informed Machine Learning [0.0]
特異摂動系の遅い不変多様体(SIM)を近似するための物理インフォームド・機械学習(PIML)手法を提案する。
提案手法では,従来のGSPT法よりも精度の高い近似法が提案されている。
また、学習過程において必要となる微分の記号的、自動的、数値的近似の計算コストの比較を行う。
論文 参考訳(メタデータ) (2023-09-14T14:10:22Z) - Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
パラメトリゼーションを必要とせず, 種々の測地における定常ナビエ-ストークス方程式の近似解を学習する手法を提案する。
物理を意識したCNNの結果は、最先端のデータベースアプローチと比較される。
論文 参考訳(メタデータ) (2023-08-04T05:09:06Z) - Deep Learning-based surrogate models for parametrized PDEs: handling
geometric variability through graph neural networks [0.0]
本研究では,時間依存型PDEシミュレーションにおけるグラフニューラルネットワーク(GNN)の可能性について検討する。
本稿では,データ駆動型タイムステッピング方式に基づくサロゲートモデルを構築するための体系的戦略を提案する。
GNNは,計算効率と新たなシナリオへの一般化の観点から,従来の代理モデルに代わる有効な代替手段を提供することができることを示す。
論文 参考訳(メタデータ) (2023-08-03T08:14:28Z) - MMGP: a Mesh Morphing Gaussian Process-based machine learning method for
regression of physical problems under non-parameterized geometrical
variability [0.30693357740321775]
本稿では,グラフニューラルネットワークに依存しない機械学習手法を提案する。
提案手法は, 明示的な形状パラメータ化を必要とせずに, 大きなメッシュを容易に扱うことができる。
論文 参考訳(メタデータ) (2023-05-22T09:50:15Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。