論文の概要: Physics-informed regularization and structure preservation for learning
stable reduced models from data with operator inference
- arxiv url: http://arxiv.org/abs/2107.02597v1
- Date: Tue, 6 Jul 2021 13:15:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-07 13:30:30.471332
- Title: Physics-informed regularization and structure preservation for learning
stable reduced models from data with operator inference
- Title(参考訳): 演算子推論データからの安定縮小モデル学習のための物理インフォームド正規化と構造保存
- Authors: Nihar Sawant, Boris Kramer, Benjamin Peherstorfer
- Abstract要約: 演算子推論は、高次元物理系の軌道から非線形項を持つ低次元力学系モデルを学習する。
2次モデルに対する安定性バイアスを誘導する演算子推論のための正則化器を提案する。
構造を保存するためのモデル制約を強制する演算子推論の定式化を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Operator inference learns low-dimensional dynamical-system models with
polynomial nonlinear terms from trajectories of high-dimensional physical
systems (non-intrusive model reduction). This work focuses on the large class
of physical systems that can be well described by models with quadratic
nonlinear terms and proposes a regularizer for operator inference that induces
a stability bias onto quadratic models. The proposed regularizer is physics
informed in the sense that it penalizes quadratic terms with large norms and so
explicitly leverages the quadratic model form that is given by the underlying
physics. This means that the proposed approach judiciously learns from data and
physical insights combined, rather than from either data or physics alone.
Additionally, a formulation of operator inference is proposed that enforces
model constraints for preserving structure such as symmetry and definiteness in
the linear terms. Numerical results demonstrate that models learned with
operator inference and the proposed regularizer and structure preservation are
accurate and stable even in cases where using no regularization or Tikhonov
regularization leads to models that are unstable.
- Abstract(参考訳): 作用素推論は、高次元物理系の軌道から多項式非線形項を持つ低次元力学系モデルを学習する。
この研究は、二次非線形項を持つモデルによってよく説明できる物理系の大きなクラスに焦点を当て、二次モデルに安定性バイアスを誘導する作用素推論の正則化子を提案する。
提案された正則化器は、大きなノルムで二次項をペナライズし、基礎となる物理学によって与えられる二次モデル形式を明示的に活用するという意味で、物理学に通知される。
これは、提案されたアプローチが、データまたは物理のみからではなく、データと物理的な洞察を組み合わせることで、公平に学習することを意味する。
さらに、線形項における対称性や定性のような構造を保存するためのモデル制約を強制する演算子推論の定式化が提案される。
数値計算の結果, 演算子推論と提案する正則化と構造保存により学習したモデルは, 正則化やチホノフ正則化を使わずに不安定なモデルに導かれる場合でも, 正確かつ安定であることがわかった。
関連論文リスト
- Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
提案したモデルアーキテクチャは、既存の文献のソリューションに比べてシンプルで効率的である。
この手法の検証はアームストロング・フレデリックのキネマティック・ハードニング・モデルを用いて得られたサロゲートデータを用いて行う。
論文 参考訳(メタデータ) (2024-03-04T07:09:54Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Guaranteed Stable Quadratic Models and their applications in SINDy and
Operator Inference [9.599029891108229]
動的モデルを構築する演算子推論手法に着目する。
推論のために、適切な最適化問題を設定することによってモデルの演算子を学習することを目的とする。
本稿では,安定性の維持を図示する数値的な例をいくつか提示する。
論文 参考訳(メタデータ) (2023-08-26T09:00:31Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
オンライン連続学習(OCL)では、学習システムはデータのストリームを受け取り、予測とトレーニングの手順を順次実行する。
本稿では,線形予測量に対するニューラル表現と状態空間モデルを用いた確率ベイズオンライン学習モデルを提案する。
多クラス分類の実験では、モデルの予測能力と非定常性を捉える柔軟性を示す。
論文 参考訳(メタデータ) (2023-06-14T11:41:42Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Linear Stability Hypothesis and Rank Stratification for Nonlinear Models [3.0041514772139166]
モデルランクを「パラメータの有効サイズ」として発見するための一般非線形モデルのためのランク階層化を提案する。
これらの結果から、目標関数のモデルランクは、その回復を成功させるために、最小限のトレーニングデータサイズを予測する。
論文 参考訳(メタデータ) (2022-11-21T16:27:25Z) - On generative models as the basis for digital twins [0.0]
デジタルツインや構造鏡の基礎として、生成モデルのためのフレームワークが提案されている。
この提案は、決定論的モデルは、ほとんどの構造モデリングアプリケーションに存在する不確実性を説明できないという前提に基づいている。
論文 参考訳(メタデータ) (2022-03-08T20:34:56Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
代理モデルを生成するためのモデルベースおよびデータ駆動型戦略を提案する。
後者は、前提となる位相構造に人工的関係を組み込むことで解釈可能な代理モデルを生成する。
我々のフレームワークは、分散パラメータモデルのための様々な空間離散化スキームと互換性がある。
論文 参考訳(メタデータ) (2022-02-02T17:07:02Z) - Hessian Eigenspectra of More Realistic Nonlinear Models [73.31363313577941]
私たちは、非線形モデルの広いファミリーのためのヘッセン固有スペクトルの言語的特徴付けを行います。
我々の分析は、より複雑な機械学習モデルで観察される多くの顕著な特徴の起源を特定するために一歩前進する。
論文 参考訳(メタデータ) (2021-03-02T06:59:52Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
同じ良い線形モデルから非負関数に対する最初のモデルを提供する。
我々は、それが表現定理を認め、凸問題に対する効率的な二重定式化を提供することを証明した。
論文 参考訳(メタデータ) (2020-07-08T07:17:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。