論文の概要: Artificial intelligence across company borders
- arxiv url: http://arxiv.org/abs/2107.03912v1
- Date: Mon, 21 Jun 2021 11:56:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-25 22:57:12.791740
- Title: Artificial intelligence across company borders
- Title(参考訳): 企業境界を越えた人工知能
- Authors: Olga Fink, Torbj{\o}rn Netland, Stefan Feuerriegel
- Abstract要約: 企業間AIは、データ開示なしで有効である。
この視点では、企業間におけるこのアプローチの使用、価値、意味について論じる。
- 参考スコア(独自算出の注目度): 17.27331855560747
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial intelligence (AI) has become a valued technology in many
companies. At the same time, a substantial potential for utilizing AI
\emph{across} company borders has remained largely untapped. An inhibiting
factor concerns disclosure of data to external parties, which raises legitimate
concerns about intellectual property rights, privacy issues, and cybersecurity
risks. Combining federated learning with domain adaptation can provide a
solution to this problem by enabling effective cross-company AI without data
disclosure. In this Viewpoint, we discuss the use, value, and implications of
this approach in a cross-company setting.
- Abstract(参考訳): 人工知能(AI)は多くの企業で価値ある技術になっている。
同時に、AI \emph{across} 企業のバウンダリを利用する大きなポテンシャルは、ほとんど未解決のままである。
制限要因は、知的財産権、プライバシー問題、サイバーセキュリティのリスクに関する正当な懸念を引き起こす外部へのデータの開示に関するものである。
フェデレートされた学習とドメイン適応を組み合わせることで、データ開示なしに効果的なクロスコンパニオンAIを実現することで、この問題の解決が可能になる。
この視点では、企業間におけるこのアプローチの使用、価値、意味について論じる。
関連論文リスト
- Towards an AI-Enhanced Cyber Threat Intelligence Processing Pipeline [0.0]
本稿では,人工知能(AI)をサイバー脅威知能(CTI)に統合する可能性について検討する。
我々は、AIに強化されたCTI処理パイプラインの青写真を提供し、そのコンポーネントと機能について詳述する。
倫理的ジレンマ、潜在的なバイアス、そしてAIによる意思決定における透明性の必須事項について論じる。
論文 参考訳(メタデータ) (2024-03-05T19:03:56Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - AI Potentiality and Awareness: A Position Paper from the Perspective of
Human-AI Teaming in Cybersecurity [18.324118502535775]
我々は、人間とAIのコラボレーションはサイバーセキュリティに価値があると論じている。
私たちは、AIの計算能力と人間の専門知識を取り入れたバランスのとれたアプローチの重要性を強調します。
論文 参考訳(メタデータ) (2023-09-28T01:20:44Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Explainable Artificial Intelligence and Cybersecurity: A Systematic
Literature Review [0.799536002595393]
XAIは、ユーザーと開発者にとってAIアルゴリズムの操作をより解釈可能にすることを目的としている。
本研究は,サイバーセキュリティに適用されたXAI研究シナリオについて検討する。
論文 参考訳(メタデータ) (2023-02-27T17:47:56Z) - A Brief Overview of AI Governance for Responsible Machine Learning
Systems [3.222802562733787]
このポジションペーパーは、AIの責任ある使用を監督するように設計されたフレームワークである、AIガバナンスの簡単な紹介を提案する。
AIの確率的性質のため、それに関連するリスクは従来の技術よりもはるかに大きい。
論文 参考訳(メタデータ) (2022-11-21T23:48:51Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Examining the Differential Risk from High-level Artificial Intelligence
and the Question of Control [0.0]
将来のAI能力の範囲と範囲は、依然として重要な不確実性である。
AIの不透明な意思決定プロセスの統合と監視の程度には懸念がある。
本研究では、AIリスクをモデル化し、代替先分析のためのテンプレートを提供する階層的な複雑なシステムフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-06T15:46:02Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。