論文の概要: Diagonal Nonlinear Transformations Preserve Structure in Covariance and
Precision Matrices
- arxiv url: http://arxiv.org/abs/2107.04136v1
- Date: Thu, 8 Jul 2021 22:31:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-13 02:37:49.049174
- Title: Diagonal Nonlinear Transformations Preserve Structure in Covariance and
Precision Matrices
- Title(参考訳): 対角非線形変換による共分散および精密行列の構造保存
- Authors: Rebecca E Morrison, Ricardo Baptista, Estelle L Basor
- Abstract要約: ある種の非ガウス分布に対して、対応は、共分散に対して、そしてほぼ精度のために、依然として保持される。
分布は「非正規」と呼ばれ、多変量正規確率変数の対角変換によって与えられる。
- 参考スコア(独自算出の注目度): 3.652509571098291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For a multivariate normal distribution, the sparsity of the covariance and
precision matrices encodes complete information about independence and
conditional independence properties. For general distributions, the covariance
and precision matrices reveal correlations and so-called partial correlations
between variables, but these do not, in general, have any correspondence with
respect to independence properties. In this paper, we prove that, for a certain
class of non-Gaussian distributions, these correspondences still hold, exactly
for the covariance and approximately for the precision. The distributions --
sometimes referred to as "nonparanormal" -- are given by diagonal
transformations of multivariate normal random variables. We provide several
analytic and numerical examples illustrating these results.
- Abstract(参考訳): 多変量正規分布の場合、共分散行列と精度行列は独立性や条件付き独立性に関する完全な情報を符号化する。
一般分布の場合、共分散行列と精度行列は変数間の相関関係といわゆる部分相関関係を示すが、一般には独立性については対応しない。
本稿では,非ガウシアン分布のあるクラスに対して,これらの対応が共分散に対して正確に保持され,精度について概ね成り立つことを証明した。
分布は「非正規」と呼ばれ、多変量正規確率変数の対角変換によって与えられる。
これらの結果を示すいくつかの解析的および数値的な例を示す。
関連論文リスト
- Unsupervised Representation Learning from Sparse Transformation Analysis [79.94858534887801]
本稿では,潜在変数のスパース成分への変換を分解し,シーケンスデータから表現を学習することを提案する。
入力データは、まず潜伏活性化の分布として符号化され、その後確率フローモデルを用いて変換される。
論文 参考訳(メタデータ) (2024-10-07T23:53:25Z) - Decomposing Gaussians with Unknown Covariance [3.734088413551237]
本稿では,ガウスデータに対する従来の分解手法をすべて包含する一般アルゴリズムを提案する。
これは$n>1$の場合にサンプル分割に代わる、より柔軟でフレキシブルな代替となる。
これらの分解を、代替戦略が利用できない設定において、モデル選択と選択後推論のタスクに適用する。
論文 参考訳(メタデータ) (2024-09-17T18:56:08Z) - A class of 2 X 2 correlated random-matrix models with Brody spacing distribution [0.0]
ブロディ分布を固有値間隔分布とする 2 X 2 乱行列モデルのクラスを導入する。
ここで導入されたランダム行列は、ガウス直交アンサンブル(GOE)の3つの重要な方法で異なる。
論文 参考訳(メタデータ) (2023-08-03T03:11:54Z) - Generalized Precision Matrix for Scalable Estimation of Nonparametric
Markov Networks [11.77890309304632]
マルコフネットワークは、確率変数の集合の中で条件独立構造またはマルコフ特性を特徴づける。
本研究では,すべてのデータ型に対する一般分布における条件独立構造を特徴付ける。
また,変数間の一般関数関係を許容し,マルコフネットワーク構造学習アルゴリズムを考案する。
論文 参考訳(メタデータ) (2023-05-19T01:53:10Z) - Quantitative deterministic equivalent of sample covariance matrices with
a general dependence structure [0.0]
我々は、次元とスペクトルパラメータの両方を含む量的境界を証明し、特に実正の半直線に近づくことを可能にする。
応用として、これらの一般モデルの経験スペクトル分布のコルモゴロフ距離の収束の新しい境界を得る。
論文 参考訳(メタデータ) (2022-11-23T15:50:31Z) - Equivariant Disentangled Transformation for Domain Generalization under
Combination Shift [91.38796390449504]
ドメインとラベルの組み合わせは、トレーニング中に観察されるのではなく、テスト環境に現れる。
我々は、同型の概念、同値性、および整合性の定義に基づく結合シフト問題の一意的な定式化を提供する。
論文 参考訳(メタデータ) (2022-08-03T12:31:31Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
一般化は、見えないデータを分類するモデルの能力をキャプチャする。
不変性はデータの変換におけるモデル予測の一貫性を測定する。
データセット中心の視点から、あるモデルの精度と不変性は異なるテストセット上で線形に相関している。
論文 参考訳(メタデータ) (2022-07-14T17:08:25Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
データから解釈可能な等価性を発見する方法について検討する。
具体的には、モデルのパラメータ共有方式に対する最適化問題として、この発見プロセスを定式化する。
また,ガウスデータの手法を理論的に解析し,研究された発見スキームとオラクルスキームの間の平均2乗ギャップを限定する。
論文 参考訳(メタデータ) (2022-04-07T17:59:19Z) - Statistical Analysis from the Fourier Integral Theorem [9.619814126465206]
条件分布関数のモンテカルロに基づく推定器について検討する。
マルコフ過程の予測など,多くの問題について検討する。
推定器は明示的なモンテカルロベースであり、反復アルゴリズムを必要としない。
論文 参考訳(メタデータ) (2021-06-11T20:44:54Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
帰納バイアスは 経験的に過剰フィットを防げる中心的存在です
この研究は、この問題を最も基本的な設定として考慮している: 線形回帰に対する定数ステップサイズ SGD。
我々は、(正規化されていない)SGDで得られるアルゴリズム正則化と、通常の最小二乗よりも多くの顕著な違いを反映する。
論文 参考訳(メタデータ) (2021-03-23T17:15:53Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
任意の特定のリー群からの変換に同値な畳み込み層を構築するための一般的な方法を提案する。
同じモデルアーキテクチャを画像、ボール・アンド・スティック分子データ、ハミルトン力学系に適用する。
論文 参考訳(メタデータ) (2020-02-25T17:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。