論文の概要: A Classification of Artificial Intelligence Systems for Mathematics
Education
- arxiv url: http://arxiv.org/abs/2107.06015v1
- Date: Tue, 13 Jul 2021 12:09:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-14 14:32:54.348194
- Title: A Classification of Artificial Intelligence Systems for Mathematics
Education
- Title(参考訳): 数学教育のための人工知能システムの分類
- Authors: Steven Van Vaerenbergh and Adri\'an P\'erez-Suay
- Abstract要約: 本章では,数学教育(ME)のデジタルツールとして使用されているAIシステムの概要を紹介する。
それはAIと機械学習(ML)の研究者を対象としており、教育アプリケーションで使われている特定の技術に光を当てています。
- 参考スコア(独自算出の注目度): 3.718476964451589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This chapter provides an overview of the different Artificial Intelligence
(AI) systems that are being used in contemporary digital tools for Mathematics
Education (ME). It is aimed at researchers in AI and Machine Learning (ML), for
whom we shed some light on the specific technologies that are being used in
educational applications; and at researchers in ME, for whom we clarify: i)
what the possibilities of the current AI technologies are, ii) what is still
out of reach and iii) what is to be expected in the near future. We start our
analysis by establishing a high-level taxonomy of AI tools that are found as
components in digital ME applications. Then, we describe in detail how these AI
tools, and in particular ML, are being used in two key applications,
specifically AI-based calculators and intelligent tutoring systems. We finish
the chapter with a discussion about student modeling systems and their
relationship to artificial general intelligence.
- Abstract(参考訳): この章では、現代数学教育(ME)のデジタルツールで使われているさまざまな人工知能(AI)システムの概要について紹介する。
それは、AIと機械学習(ML)の研究者を対象にしており、教育アプリケーションで使われている特定の技術に光を当てています。
デジタルmeアプリケーションのコンポーネントとして見出されるaiツールのハイレベルな分類を確立して分析を開始します。
そして、これらのAIツール、特にMLが、2つの主要なアプリケーション、特にAIベースの電卓とインテリジェントなチューターシステムでどのように使われているかを詳細に説明する。
本章では,学生のモデリングシステムと人工知能との関連について論じる。
関連論文リスト
- Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies [0.0]
人工知能(AGI)は、人工知能(AI)研究においてしばらくの間、明白な目標であった。
AGIは、人間のように、新しい問題領域にさらされ、それを学び、推論プロセスを使って意思決定する能力を持つでしょう。
本稿では,AGIの製作に向けての歩みについて述べる。
論文 参考訳(メタデータ) (2024-06-17T07:21:44Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - AI in Software Engineering: A Survey on Project Management Applications [3.156791351998142]
機械学習(ML)はデータセットでトレーニングを行うアルゴリズムを採用しており、特定のタスクを自律的に実行することができる。
AIは、特にプロジェクト管理と計画において、ソフトウェアエンジニアリングの分野で大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-07-27T23:02:24Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - Towards Systems Education for Artificial Intelligence: A Course Practice
in Intelligent Computing Architectures [6.440694188229122]
このコースは、FPGAプラットフォーム上でAIアクセラレータを設計する学生に教えることを目的としている。
講座内容は講義ノート及び関連技術資料を含む。
いくつかの教育経験と効果が議論され、将来の可能性も議論されている。
論文 参考訳(メタデータ) (2022-06-22T11:48:04Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Measuring Ethics in AI with AI: A Methodology and Dataset Construction [1.6861004263551447]
我々は、AI技術のこのような新しい機能を使用して、AI測定能力を増強することを提案する。
我々は倫理的問題や関心事に関連する出版物を分類するモデルを訓練する。
私たちは、AIメトリクス、特に信頼できる公正なAIベースのツールや技術開発への彼らの貢献の意味を強調します。
論文 参考訳(メタデータ) (2021-07-26T00:26:12Z) - Watershed of Artificial Intelligence: Human Intelligence, Machine
Intelligence, and Biological Intelligence [0.2580765958706853]
本稿は,23年前に提案された1回学習機構と,それに続く画像分類におけるワンショット学習の成功をレビューする。
AIは、人工知能(AHI)、人工知能(AMI)、および人工知能(ABI)の3つのカテゴリに明確に分割されるべきである。
論文 参考訳(メタデータ) (2021-04-27T13:03:25Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。