Synchronization and phase shaping of single photons with high-efficiency
quantum memory
- URL: http://arxiv.org/abs/2107.08742v1
- Date: Mon, 19 Jul 2021 10:29:25 GMT
- Title: Synchronization and phase shaping of single photons with high-efficiency
quantum memory
- Authors: Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong,
Jianfeng Li, Hui Yan, and Shi-Liang Zhu
- Abstract summary: We develop a built-in phase modulator for single photons using a quantum memory.
The fast phase modulation of a single photon in both step and linear manner are verified.
The developed phase modulator may push forward the practical quantum information applications.
- Score: 4.0553651947971865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time synchronization and phase shaping of single photons both play
fundamental roles in quantum information applications that rely on multi-photon
quantum interference. Phase shaping typically requires separate modulators with
extra insertion losses. Here, we develop a all-optical built-in phase modulator
for single photons using a quantum memory. The fast phase modulation of a
single photon in both step and linear manner are verified by observing the
efficient quantum-memory-assisted Hong-Ou-Mandel interference between two
single photons, where the anti-coalescence effect of bosonic photon pairs is
demonstrated. The developed phase modulator may push forward the practical
quantum information applications.
Related papers
- Non-classical excitation of a solid-state quantum emitter [0.0]
We show that a single photon is sufficient to change the state of a solid-state quantum emitter.
These results suggest future possibilities ranging from enabling quantum information transfer in a quantum network to building deterministic entangling gates for photonic quantum computing.
arXiv Detail & Related papers (2024-07-30T16:16:58Z) - On-demand shaped photon emission based on a parametrically modulated qubit [14.88027830561737]
A single-rail and dual-rail time-bin shaped photon generator can act as a quantum interface of a point-to-point quantum network.
We develop an efficient photon field measurement setup based on the data stream processing of GPU.
The results demonstrate that our method is hardware efficient, simple to implement, and scalable.
arXiv Detail & Related papers (2024-05-02T16:53:54Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Direct observation of non-linear optical phase shift induced by a single
quantum emitter in a waveguide [2.3776015607838747]
We experimentally realize an optical phase shift of $0.19 pi pm 0.03$ radians using a weak coherent state interacting with a single quantum dot.
The nonlinear process is sensitive at the single-photon level and can be made compatible with scalable photonic integrated circuitry.
arXiv Detail & Related papers (2023-05-11T14:32:12Z) - Tailoring photon statistics with an atom-based two-photon interferometer [0.0]
We actively control the quantum phase between the transmitted and incoherently scattered two-photon component.
We observe interference fringes in the normalized photon coincidence rate, varying from antibunching to bunching.
Our results lend themselves to the development of novel quantum light sources.
arXiv Detail & Related papers (2022-12-19T16:24:54Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Two-photon phase-sensing with single-photon detection [0.0]
Path-entangled multi-photon states allow optical phase-sensing beyond the shot-noise limit.
We exploit advanced quantum state engineering based on superposing two photon-pair creation events.
We infer phase shifts by measuring the average intensity of the single-photon beam on a photodiode.
arXiv Detail & Related papers (2020-07-06T08:50:37Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.