Learning Sparse Fixed-Structure Gaussian Bayesian Networks
- URL: http://arxiv.org/abs/2107.10450v1
- Date: Thu, 22 Jul 2021 04:17:46 GMT
- Title: Learning Sparse Fixed-Structure Gaussian Bayesian Networks
- Authors: Arnab Bhattacharyya, Davin Choo, Rishikesh Gajjala, Sutanu Gayen,
Yuhao Wang
- Abstract summary: We study the problem of learning a fixed-structure Gaussian Bayesian network up to a bounded error in total variation distance.
We analyze the commonly used node-wise least squares regression (LeastSquares) and prove that it has a near-optimal sample complexity.
We show that the algorithm specialized to polytrees, CauchyEstTree, has near-optimal sample complexity.
- Score: 10.180716739570085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian Bayesian networks (a.k.a. linear Gaussian structural equation
models) are widely used to model causal interactions among continuous
variables. In this work, we study the problem of learning a fixed-structure
Gaussian Bayesian network up to a bounded error in total variation distance. We
analyze the commonly used node-wise least squares regression (LeastSquares) and
prove that it has a near-optimal sample complexity. We also study a couple of
new algorithms for the problem:
- BatchAvgLeastSquares takes the average of several batches of least squares
solutions at each node, so that one can interpolate between the batch size and
the number of batches. We show that BatchAvgLeastSquares also has near-optimal
sample complexity.
- CauchyEst takes the median of solutions to several batches of linear
systems at each node. We show that the algorithm specialized to polytrees,
CauchyEstTree, has near-optimal sample complexity.
Experimentally, we show that for uncontaminated, realizable data, the
LeastSquares algorithm performs best, but in the presence of contamination or
DAG misspecification, CauchyEst/CauchyEstTree and BatchAvgLeastSquares
respectively perform better.
Related papers
- Learning general Gaussian mixtures with efficient score matching [16.06356123715737]
We study the problem of learning mixtures of $k$ Gaussians in $d$ dimensions.
We make no separation assumptions on the underlying mixture components.
We give an algorithm that draws $dmathrmpoly(k/varepsilon)$ samples from the target mixture, runs in sample-polynomial time, and constructs a sampler.
arXiv Detail & Related papers (2024-04-29T17:30:36Z) - Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean
Estimation and Linear Regression [44.13655983242414]
We design the first sample near- and almost linear-time algorithms with optimal error guarantees.
For robust linear regression, we give the first algorithm with sample complexity $n = tildeO(d/epsilon2)$ and almost linear runtime that approximates the target regressor within $ell$- $O(epsilon)$.
This is the first sample and time algorithm achieving the optimal error guarantee, answering an open question in the literature.
arXiv Detail & Related papers (2023-12-04T00:31:16Z) - Feature Adaptation for Sparse Linear Regression [20.923321050404827]
Sparse linear regression is a central problem in high-dimensional statistics.
We provide an algorithm that adapts to tolerate a small number of approximate dependencies.
Our framework fits into a broader framework of feature adaptation for sparse linear regression.
arXiv Detail & Related papers (2023-05-26T12:53:13Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - Active-LATHE: An Active Learning Algorithm for Boosting the Error
Exponent for Learning Homogeneous Ising Trees [75.93186954061943]
We design and analyze an algorithm that boosts the error exponent by at least 40% when $rho$ is at least $0.8$.
Our analysis hinges on judiciously exploiting the minute but detectable statistical variation of the samples to allocate more data to parts of the graph.
arXiv Detail & Related papers (2021-10-27T10:45:21Z) - Projected Stochastic Gradient Langevin Algorithms for Constrained
Sampling and Non-Convex Learning [0.0]
Langevin algorithms are methods with additive noise.
Langevin algorithms have been used for decades in chain Carlo (Milon)
For learning, we show that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that
arXiv Detail & Related papers (2020-12-22T16:19:20Z) - FANOK: Knockoffs in Linear Time [73.5154025911318]
We describe a series of algorithms that efficiently implement Gaussian model-X knockoffs to control the false discovery rate on large scale feature selection problems.
We test our methods on problems with $p$ as large as $500,000$.
arXiv Detail & Related papers (2020-06-15T21:55:34Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
We study the efficient learnability of high-dimensional Gaussian mixtures in the adversarial-robust setting.
We provide an algorithm that learns the components of an $epsilon$-corrupted $k$-mixture within information theoretically near-optimal error proofs of $tildeO(epsilon)$.
Our main technical contribution is a new robust identifiability proof clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system.
arXiv Detail & Related papers (2020-05-13T16:44:12Z) - Hardness of Random Optimization Problems for Boolean Circuits,
Low-Degree Polynomials, and Langevin Dynamics [78.46689176407936]
We show that families of algorithms fail to produce nearly optimal solutions with high probability.
For the case of Boolean circuits, our results improve the state-of-the-art bounds known in circuit complexity theory.
arXiv Detail & Related papers (2020-04-25T05:45:59Z) - Efficient Algorithms for Multidimensional Segmented Regression [42.046881924063044]
We study the fundamental problem of fixed design em multidimensional regression.
We provide the first sample and computationally efficient algorithm for this problem in any fixed dimension.
Our algorithm relies on a simple merging iterative approach, which is novel in the multidimensional setting.
arXiv Detail & Related papers (2020-03-24T19:39:34Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.