An overcome of far-distance limitation on tunnel CCTV-based accident
detection in AI deep-learning frameworks
- URL: http://arxiv.org/abs/2107.10567v1
- Date: Thu, 22 Jul 2021 10:42:25 GMT
- Title: An overcome of far-distance limitation on tunnel CCTV-based accident
detection in AI deep-learning frameworks
- Authors: Kyu-Beom Lee and Hyu-Soung Shin
- Abstract summary: Tunnel CCTVs are installed to low height and long-distance interval.
It is almost impossible to detect vehicles in far distance from the CCTV in the existing tunnel CCTV-based accident detection system.
This paper creates each dataset consisting of images and bounding boxes based on the original and warped images of the CCTV.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Tunnel CCTVs are installed to low height and long-distance interval. However,
because of the limitation of installation height, severe perspective effect in
distance occurs, and it is almost impossible to detect vehicles in far distance
from the CCTV in the existing tunnel CCTV-based accident detection system
(Pflugfelder 2005). To overcome the limitation, a vehicle object is detected
through an object detection algorithm based on an inverse perspective transform
by re-setting the region of interest (ROI). It can detect vehicles that are far
away from the CCTV. To verify this process, this paper creates each dataset
consisting of images and bounding boxes based on the original and warped images
of the CCTV at the same time, and then compares performance of the deep
learning object detection models trained with the two datasets. As a result,
the model that trained the warped image was able to detect vehicle objects more
accurately at the position far from the CCTV compared to the model that trained
the original image.
Related papers
- Application of 2D Homography for High Resolution Traffic Data Collection
using CCTV Cameras [9.946460710450319]
This study implements a three-stage video analytics framework for extracting high-resolution traffic data from CCTV cameras.
The key components of the framework include object recognition, perspective transformation, and vehicle trajectory reconstruction.
The results of the study showed about +/- 4.5% error rate for directional traffic counts, less than 10% MSE for speed bias between camera estimates.
arXiv Detail & Related papers (2024-01-14T07:33:14Z) - Spatio-Temporal Context Modeling for Road Obstacle Detection [12.464149169670735]
A data-driven context-temporal model of the driving scene is constructed with the layouts of the training data.
Obstacles are detected via state-of-the-art object detection algorithms, and the results are combined with the generated scene.
arXiv Detail & Related papers (2023-01-19T07:06:35Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
We show that road obstacle detection techniques ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases.
We leverage this by computing a scale map encoding the apparent size of a hypothetical object at every image location.
We then leverage this perspective map to generate training data by injecting onto the road synthetic objects whose size corresponds to the perspective foreshortening.
arXiv Detail & Related papers (2022-10-04T17:48:42Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications.
The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method.
The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions.
arXiv Detail & Related papers (2022-08-12T19:07:20Z) - Cross-Camera Trajectories Help Person Retrieval in a Camera Network [124.65912458467643]
Existing methods often rely on purely visual matching or consider temporal constraints but ignore the spatial information of the camera network.
We propose a pedestrian retrieval framework based on cross-camera generation, which integrates both temporal and spatial information.
To verify the effectiveness of our method, we construct the first cross-camera pedestrian trajectory dataset.
arXiv Detail & Related papers (2022-04-27T13:10:48Z) - Identification of Driver Phone Usage Violations via State-of-the-Art
Object Detection with Tracking [8.147652597876862]
We propose a custom-trained state-of-the-art object detector to work with roadside cameras to capture driver phone usage without the need for human intervention.
The proposed approach also addresses the issues caused by windscreen glare and introduces the steps required to remedy this.
arXiv Detail & Related papers (2021-09-05T16:37:03Z) - Cross-Camera Feature Prediction for Intra-Camera Supervised Person
Re-identification across Distant Scenes [70.30052164401178]
Person re-identification (Re-ID) aims to match person images across non-overlapping camera views.
ICS-DS Re-ID uses cross-camera unpaired data with intra-camera identity labels for training.
Cross-camera feature prediction method to mine cross-camera self supervision information.
Joint learning of global-level and local-level features forms a global-local cross-camera feature prediction scheme.
arXiv Detail & Related papers (2021-07-29T11:27:50Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Online Clustering-based Multi-Camera Vehicle Tracking in Scenarios with
overlapping FOVs [2.6365690297272617]
Multi-Target Multi-Camera (MTMC) vehicle tracking is an essential task of visual traffic monitoring.
We present a new low-latency online approach for MTMC tracking in scenarios with partially overlapping fields of view.
arXiv Detail & Related papers (2021-02-08T09:55:55Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
We propose a robust method for estimating road curb 3D parameters using a calibrated monocular camera equipped with a fisheye lens.
Our approach is able to estimate the vehicle to curb distance in real time with mean accuracy of more than 90%.
arXiv Detail & Related papers (2020-02-28T00:24:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.