論文の概要: Belief Propagation as Diffusion
- arxiv url: http://arxiv.org/abs/2107.12230v1
- Date: Mon, 26 Jul 2021 14:17:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-27 18:55:42.697787
- Title: Belief Propagation as Diffusion
- Title(参考訳): 拡散としての信念の伝播
- Authors: Olivier Peltre
- Abstract要約: 本稿では,高次元確率分布の限界を推定するために,新しい信念伝搬アルゴリズムを提案する。
これらは、統計システムの局所的な記述に関連する自然な(共)ホモロジー的な構成を含む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce novel belief propagation algorithms to estimate the marginals of
a high dimensional probability distribution. They involve natural
(co)homological constructions relevant for a localised description of
statistical systems.
- Abstract(参考訳): 本稿では,高次元確率分布の限界を推定する新しい信念伝達アルゴリズムを提案する。
これらは統計的システムの局所的な記述に関連する自然(co)ホモロジー的構成を含む。
関連論文リスト
- Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
本稿では,ニューラルネットワークによる安定確率分布の伝播手法を提案する。
提案手法は局所線形化に基づいており,ReLU非線型性に対する全変動距離の近似値として最適であることを示す。
論文 参考訳(メタデータ) (2024-02-13T09:40:19Z) - Bayesian Renormalization [68.8204255655161]
ベイズ統計的推論にインスパイアされた再正規化に対する完全情報理論的アプローチを提案する。
ベイズ再正規化の主な洞察は、フィッシャー計量が創発的RGスケールの役割を担う相関長を定義することである。
本研究では,ベイズ正規化方式が既存のデータ圧縮法やデータ生成法とどのように関係しているかを考察する。
論文 参考訳(メタデータ) (2023-05-17T18:00:28Z) - Inferential Moments of Uncertain Multivariable Systems [0.0]
我々はベイズ確率の更新をランダムなプロセスとして扱い、推論モーメントと呼ばれる結合確率分布の固有量的特徴を明らかにする。
推論モーメントは、まだ取得されていない情報に応じて、事前分布がどのように更新されるかについての形状情報を定量化する。
情報理論の要素と推論理論の関連性を示す推論モーメントの観点から,相互情報の時系列展開を求める。
論文 参考訳(メタデータ) (2023-05-03T00:56:12Z) - The Inverse of Exact Renormalization Group Flows as Statistical Inference [0.0]
我々は、最適な輸送のインスタンス化として、Exact Renormalization Group(ERG)の視点に基づいて構築する。
我々はベイズ統計推論の仲介を通してERGを理解するための新しい情報理論的視点を提供する。
論文 参考訳(メタデータ) (2022-12-21T21:38:34Z) - Continuous and Distribution-free Probabilistic Wind Power Forecasting: A
Conditional Normalizing Flow Approach [1.684864188596015]
条件正規化フロー(CNF)に基づく確率的風力予測のためのデータ駆動型手法を提案する。
既存の手法とは対照的に、このアプローチは(非パラメトリックおよび量子的アプローチのように)分布自由であり、連続確率密度を直接生成することができる。
論文 参考訳(メタデータ) (2022-06-06T08:48:58Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - A visual introduction to Gaussian Belief Propagation [22.02770204949673]
本稿では、任意に構造化された因子グラフのノード間でメッセージを渡すことによって、近似確率推論アルゴリズムの視覚的導入を提案する。
ループ的信念伝播の特別な場合として、GBP更新はローカル情報のみに依存し、メッセージスケジュールとは独立して収束する。
我々の重要な論点は、最近のコンピューティングハードウェアのトレンドを考えると、GBPは将来の機械学習システムのためのスケーラブルな分散確率的推論フレームワークとして機能する適切な計算特性を持っているということです。
論文 参考訳(メタデータ) (2021-07-05T22:43:27Z) - Recovery of Joint Probability Distribution from one-way marginals: Low
rank Tensors and Random Projections [2.9929093132587763]
統合確率質量関数(PMF)推定は、基本的な機械学習問題である。
本研究では、トモグラフィーのアイデアを用いたPMF推定問題に、データのランダムな投影をリンクする。
一方向マージンからテンソルの因子を回復するための新しいアルゴリズムを提供し、様々な合成データセットと実世界のデータセットを横断してテストし、推定された分類モデル上でMAP推論を行う。
論文 参考訳(メタデータ) (2021-03-22T14:00:57Z) - Profile Entropy: A Fundamental Measure for the Learnability and
Compressibility of Discrete Distributions [63.60499266361255]
離散分布のサンプルに対して、プロファイルエントロピーは推定、推論、圧縮の概念を統一する基本的な尺度であることを示す。
具体的には、プロファイルエントロピー a) は、最適自然推定器に対する分布を推定する速度を決定する; b) 任意のラベル不変分布コレクションに対する最適推定器と比較して全ての対称特性を推定する速度を特徴付ける; c) プロファイル圧縮の限界として機能する。
論文 参考訳(メタデータ) (2020-02-26T17:49:04Z) - Distribution Approximation and Statistical Estimation Guarantees of
Generative Adversarial Networks [82.61546580149427]
GAN(Generative Adversarial Networks)は教師なし学習において大きな成功を収めている。
本稿では,H'older空間における密度データ分布推定のためのGANの近似と統計的保証を提供する。
論文 参考訳(メタデータ) (2020-02-10T16:47:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。