Parallel Surrogate-assisted Optimization Using Mesh Adaptive Direct
Search
- URL: http://arxiv.org/abs/2107.12421v1
- Date: Mon, 26 Jul 2021 18:28:56 GMT
- Title: Parallel Surrogate-assisted Optimization Using Mesh Adaptive Direct
Search
- Authors: Bastien Talgorn, St\'ephane Alarie, and Michael Kokkolaras
- Abstract summary: We present a method that employs surrogate models and concurrent computing at the search step of the mesh adaptive direct search (MADS) algorithm.
We conduct numerical experiments to assess the performance of the modified MADS algorithm with respect to available CPU resources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider computationally expensive blackbox optimization problems and
present a method that employs surrogate models and concurrent computing at the
search step of the mesh adaptive direct search (MADS) algorithm. Specifically,
we solve a surrogate optimization problem using locally weighted scatterplot
smoothing (LOWESS) models to find promising candidate points to be evaluated by
the blackboxes. We consider several methods for selecting promising points from
a large number of points. We conduct numerical experiments to assess the
performance of the modified MADS algorithm with respect to available CPU
resources by means of five engineering design problems.
Related papers
- DynamoRep: Trajectory-Based Population Dynamics for Classification of
Black-box Optimization Problems [0.755972004983746]
We propose a feature extraction method that describes the trajectories of optimization algorithms using simple statistics.
We demonstrate that the proposed DynamoRep features capture enough information to identify the problem class on which the optimization algorithm is running.
arXiv Detail & Related papers (2023-06-08T06:57:07Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
We consider the problem of searching an input maximizing a black-box objective function given a static dataset of input-output queries.
A popular approach to solving this problem is maintaining a proxy model that approximates the true objective function.
Here, the main challenge is how to avoid adversarially optimized inputs during the search.
arXiv Detail & Related papers (2021-10-27T05:37:12Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one.
Our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape.
arXiv Detail & Related papers (2021-03-19T11:18:03Z) - Meta Learning Black-Box Population-Based Optimizers [0.0]
We propose the use of meta-learning to infer population-based blackbox generalizations.
We show that the meta-loss function encourages a learned algorithm to alter its search behavior so that it can easily fit into a new context.
arXiv Detail & Related papers (2021-03-05T08:13:25Z) - Alternating Direction Method of Multipliers for Quantization [15.62692130672419]
We study the performance of the Alternating Direction Method of Multipliers for Quantization ($texttADMM-Q$) algorithm.
We develop a few variants of $texttADMM-Q$ that can handle inexact update rules.
We empirically evaluate the efficacy of our proposed approaches.
arXiv Detail & Related papers (2020-09-08T01:58:02Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z) - Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants [1.0965065178451106]
We show that it is possible to achieve high-quality performance predictions with off-the-shelf supervised learning approaches.
We test this approach on a portfolio of very similar algorithms, which we choose from the family of modular CMA-ES algorithms.
arXiv Detail & Related papers (2020-06-17T13:34:57Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.