Macroscopic limit of quantum systems
- URL: http://arxiv.org/abs/2107.13594v2
- Date: Thu, 26 Aug 2021 09:30:35 GMT
- Title: Macroscopic limit of quantum systems
- Authors: Janos Polonyi
- Abstract summary: Classical physics is approached from quantum mechanics in the macroscopic limit.
The emergence of a classical trajectory is followed for the average of an observable over a large set of independent microscopical systems.
The laws can be recovered in all practical purposes, owing to the largeness of Avogadro's number.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical physics is approached from quantum mechanics in the macroscopic
limit. The technical device to achieve this goal is the quantum version of the
central limit theorem, derived for an observable at a given time and for the
time-dependent expectation value of the coordinate. The emergence of the
classical trajectory can be followed for the average of an observable over a
large set of independent microscopical systems, and the deterministic classical
laws can be recovered in all practical purposes, owing to the largeness of
Avogadro's number. This result refers to the observed system without
considering the measuring apparatus. The emergence of a classical trajectory is
followed qualitatively in Wilson's cloud chamber.
Related papers
- Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum measuring systems: considerations from the holographic principle [0.0]
We argue that the unitary real-time evolution of a non-relativistic free particle with complex-valued quantum probability amplitude can be analytically continued to an imaginary-time classical process.
This argument could shed light on the Euclidean regime of the holographic Universe.
arXiv Detail & Related papers (2022-11-21T10:52:27Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Measurement of a quantum system with a classical apparatus using
ensembles on configuration space [0.48733623015338234]
We use the approach of ensembles on configurations space to give a detailed account of a classical apparatus measuring the position of a quantum particle.
We show that the probability of the pointer of the classical apparatus is left in a state that corresponds to the probability of the quantum particle.
Since this formalism incorporates uncertainties and finite measurement precision, it is well suited for metrological applications.
arXiv Detail & Related papers (2022-05-19T15:48:12Z) - Random matrices: Application to quantum paradoxes [0.0]
Recently, a geometric embedding of the classical space and classical phase space of an n-particle system was constructed and shown to be physically meaningful.
Namely, the Newtonian dynamics of the particles was recovered from the Schroedinger dynamics by constraining the state of the system to the classical phase space submanifold of the space of states.
A series of theorems related to the embedding and the Schroedinger evolution with a random Hamiltonian was proven and shown to be applicable to the process of measurement in classical and quantum mechanics.
arXiv Detail & Related papers (2022-04-08T20:26:03Z) - Classical Tracking for Quantum Trajectories [1.284647943889634]
Quantum state estimation, based on the numerical integration of master equations (SMEs), provides estimates for the evolution of quantum systems.
We show that classical tracking methods based on particle filters can be used to track quantum states.
arXiv Detail & Related papers (2022-02-01T08:39:19Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Classical limit of quantum mechanics for damped driven oscillatory
systems: Quantum-classical correspondence [0.0]
We develop a quantum formalism on the basis of a linear-invariant theorem.
We illustrate the correspondence of the quantum energy with the classical one in detail.
arXiv Detail & Related papers (2020-10-18T12:12:01Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.