論文の概要: Learning the temporal evolution of multivariate densities via
normalizing flows
- arxiv url: http://arxiv.org/abs/2107.13735v1
- Date: Thu, 29 Jul 2021 04:05:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-30 13:22:27.397027
- Title: Learning the temporal evolution of multivariate densities via
normalizing flows
- Title(参考訳): 正規化流による多変量密度の時間変化の学習
- Authors: Yubin Lu, Romit Maulik, Ting Gao, Felix Dietrich, Ioannis G.
Kevrekidis, Jinqiao Duan
- Abstract要約: 微分方程式からサンプル経路データを用いて確率分布を学習する手法を提案する。
我々は、時間依存マッピングの構築を支援する機械学習を用いて、この進化を分析する。
このアプローチが非局所フォッカー・プランク方程式の解を学習できることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a method to learn probability distributions using
sample path data from stochastic differential equations. Specifically, we
consider temporally evolving probability distributions (e.g., those produced by
integrating local or nonlocal Fokker-Planck equations). We analyze this
evolution through machine learning assisted construction of a time-dependent
mapping that takes a reference distribution (say, a Gaussian) to each and every
instance of our evolving distribution. If the reference distribution is the
initial condition of a Fokker-Planck equation, what we learn is the time-T map
of the corresponding solution. Specifically, the learned map is a normalizing
flow that deforms the support of the reference density to the support of each
and every density snapshot in time. We demonstrate that this approach can learn
solutions to non-local Fokker-Planck equations, such as those arising in
systems driven by both Brownian and L\'evy noise. We present examples with two-
and three-dimensional, uni- and multimodal distributions to validate the
method.
- Abstract(参考訳): 本研究では,確率微分方程式からサンプルパスデータを用いて確率分布を学習する手法を提案する。
具体的には、時間発展する確率分布を考える(例えば、局所的あるいは非局所的フォッカー・プランク方程式を積分して生じる分布)。
我々は、この進化を機械学習によって分析し、進化している分布の各インスタンスに参照分布(例えばガウス分布)を取る時間依存マッピングの構築を支援する。
基準分布がフォッカー・プランク方程式の初期条件であるなら、我々が学んだことは対応する解の時間-T写像である。
具体的には、学習されたマップは、参照密度のサポートを時間内の各密度スナップショットのサポートに変形させる正規化フローである。
このアプローチは、ブラウンおよびL'evyノイズによって駆動されるシステムに生じるような非局所フォッカー・プランク方程式の解を学習できることを実証する。
本手法を検証するために,2次元および3次元,一様および多様分布を用いた例を示す。
関連論文リスト
- A Stein Gradient Descent Approach for Doubly Intractable Distributions [5.63014864822787]
そこで本研究では,2重に抽出可能な分布を推定するために,モンテカルロ・スタイン変分勾配勾配(MC-SVGD)法を提案する。
提案手法は,後続分布に匹敵する推論性能を提供しながら,既存のアルゴリズムよりもかなりの計算ゲインを達成する。
論文 参考訳(メタデータ) (2024-10-28T13:42:27Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - Approximating a RUM from Distributions on k-Slates [88.32814292632675]
与えられた分布を平均で最もよく近似するRUMを求める一般化時間アルゴリズムを求める。
我々の理論的結果は、実世界のデータセットに効果的でスケール可能なものを得るという、実践的な結果も得られます。
論文 参考訳(メタデータ) (2023-05-22T17:43:34Z) - Approximate sampling and estimation of partition functions using neural
networks [0.0]
本研究では, 可変オートエンコーダ (VAE) をいかに応用できるかを示す。
論理を逆転させ、正規化まで特定された複雑で難解な潜在分布を仮定して、VAEを単純かつトラクタブルな分布に適合するように訓練する。
この手順は、トレーニングデータやマルコフ連鎖モンテカルロサンプリングを使わずに近似を構成する。
論文 参考訳(メタデータ) (2022-09-21T15:16:45Z) - Probability flow solution of the Fokker-Planck equation [10.484851004093919]
確率の流れを記述した常微分方程式の統合に基づく代替スキームを導入する。
力学とは異なり、この方程式は決定論的に初期密度からのサンプルを後から溶液のサンプルにプッシュする。
我々のアプローチは、生成モデルのためのスコアベース拡散の最近の進歩に基づいている。
論文 参考訳(メタデータ) (2022-06-09T17:37:09Z) - GANs as Gradient Flows that Converge [3.8707695363745223]
分布依存常微分方程式によって誘導される勾配流に沿って、未知のデータ分布が長時間の極限として現れることを示す。
ODEのシミュレーションは、生成ネットワーク(GAN)のトレーニングと等価である。
この等価性は、GANの新たな「協力的」見解を提供し、さらに重要なのは、GANの多様化に新たな光を放つことである。
論文 参考訳(メタデータ) (2022-05-05T20:29:13Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
データから解釈可能な等価性を発見する方法について検討する。
具体的には、モデルのパラメータ共有方式に対する最適化問題として、この発見プロセスを定式化する。
また,ガウスデータの手法を理論的に解析し,研究された発見スキームとオラクルスキームの間の平均2乗ギャップを限定する。
論文 参考訳(メタデータ) (2022-04-07T17:59:19Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
そこで我々は, DRE-inftyを提案する。 DRE-inftyは, 密度比推定(DRE)を, より簡単なサブプロブレムに還元する手法である。
モンテカルロ法にインスパイアされ、中間ブリッジ分布の無限連続体を介して2つの分布の間を滑らかに補間する。
提案手法は,複雑な高次元データセット上での相互情報推定やエネルギーベースモデリングなどの下流タスクにおいて良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-22T06:26:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。