論文の概要: A Checklist for Explainable AI in the Insurance Domain
- arxiv url: http://arxiv.org/abs/2107.14039v1
- Date: Sun, 18 Jul 2021 10:19:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 23:11:03.886806
- Title: A Checklist for Explainable AI in the Insurance Domain
- Title(参考訳): 保険ドメインにおける説明可能なAIのチェックリスト
- Authors: Olivier Koster and Ruud Kosman and Joost Visser
- Abstract要約: オランダの保険業界におけるAIアルゴリズムの利用状況と、説明可能な人工知能(XAI)技術の採用について検討する。
複雑化の1つは、専門家や非専門家のためのアルゴリズムの透明性と説明性の欠如である。
我々は、XAIに関する品質基準を保証するための保険会社のチェックリストを設計する。
- 参考スコア(独自算出の注目度): 0.17188280334580192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) is a powerful tool to accomplish a great many
tasks. This exciting branch of technology is being adopted increasingly across
varying sectors, including the insurance domain. With that power arise several
complications. One of which is a lack of transparency and explainability of an
algorithm for experts and non-experts alike. This brings into question both the
usefulness as well as the accuracy of the algorithm, coupled with an added
difficulty to assess potential biases within the data or the model. In this
paper, we investigate the current usage of AI algorithms in the Dutch insurance
industry and the adoption of explainable artificial intelligence (XAI)
techniques. Armed with this knowledge we design a checklist for insurance
companies that should help assure quality standards regarding XAI and a solid
foundation for cooperation between organisations. This checklist extends an
existing checklist of SIVI, the standardisation institute for digital
cooperation and innovation in Dutch insurance.
- Abstract(参考訳): 人工知能(AI)は、多くのタスクを達成するための強力なツールです。
このエキサイティングなテクノロジー分野は、保険分野を含む様々な分野に広く採用されている。
その力はいくつかの合併症を引き起こす。
その1つは、専門家や非専門家のためのアルゴリズムの透明性と説明性の欠如である。
これにより、アルゴリズムの有用性と精度の両方に疑問が呈され、データやモデル内の潜在的なバイアスを評価することの難しさが加わった。
本稿では、オランダの保険業界におけるAIアルゴリズムの利用状況と、説明可能な人工知能(XAI)技術の導入について検討する。
この知識を生かして、私たちは、XAIに関する品質基準の保証と、組織間の協力のためのしっかりとした基盤を保証するための保険会社のチェックリストを設計します。
このチェックリストは、オランダの保険におけるデジタル協力と革新のための標準化機関であるSIVIの既存のチェックリストを拡張している。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review [12.38351931894004]
本稿では,安全かつ信頼性の高い自動運転のための説明可能な手法に関する,最初の体系的な文献レビューを紹介する。
我々は、ADにおける安全で信頼性の高いAIに対するXAIの5つの重要な貢献を特定し、それらは解釈可能な設計、解釈可能な代理モデル、解釈可能なモニタリング、補助的な説明、解釈可能な検証である。
我々は、これらのコントリビューションを統合するためにSafeXと呼ばれるモジュラーフレームワークを提案し、同時にAIモデルの安全性を確保しながら、ユーザへの説明提供を可能にした。
論文 参考訳(メタデータ) (2024-02-08T09:08:44Z) - Explainable AI is Responsible AI: How Explainability Creates Trustworthy
and Socially Responsible Artificial Intelligence [9.844540637074836]
これは責任あるAIのトピックであり、信頼できるAIシステムを開発する必要性を強調している。
XAIは、責任あるAI(RAI)のためのビルディングブロックとして広く考えられている。
以上の結果から,XAIはRAIのすべての柱にとって不可欠な基盤である,という結論に至った。
論文 参考訳(メタデータ) (2023-12-04T00:54:04Z) - Trust, Accountability, and Autonomy in Knowledge Graph-based AI for
Self-determination [1.4305544869388402]
知識グラフ(KG)は、インテリジェントな意思決定を支えるための基盤として登場した。
KGと神経学習の統合は、現在活発な研究のトピックである。
本稿では,KGベースのAIによる自己決定を支援するための基礎的なトピックと研究の柱を概念化する。
論文 参考訳(メタデータ) (2023-10-30T12:51:52Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
医療AIに関連する技術的、臨床的、倫理的、法的リスクに関する懸念が高まっている。
この研究は、Future-AIガイドラインを、医療における信頼できるAIツールの開発とデプロイを導くための最初の国際コンセンサスフレームワークとして説明している。
論文 参考訳(メタデータ) (2023-08-11T10:49:05Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Adversarial AI in Insurance: Pervasiveness and Resilience [0.0]
本稿では,AIシステムを騙し,誤った出力を生成するために,修正された入力データを作成することからなる敵攻撃について検討する。
防御法や予防システムについては,少数発・ゼロ発のマルチラベリングを考慮し論じる。
関心が高まりつつある関連するトピックは、AIとMLコンポーネントを組み込んだシステムの検証と検証である。
論文 参考訳(メタデータ) (2023-01-17T08:49:54Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Explainable AI meets Healthcare: A Study on Heart Disease Dataset [0.0]
目的は、様々な技術を用いて説明可能なAIシステムの理解性と解釈可能性について実践者に啓蒙することである。
本論文は、心臓病データセットに基づく例を収録し、信頼性を高めるために説明可能性技術をどのように好むべきかを解明する。
論文 参考訳(メタデータ) (2020-11-06T05:18:43Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。