Measuring Domain Knowledge for Early Prediction of Student Performance:
A Semantic Approach
- URL: http://arxiv.org/abs/2107.14047v1
- Date: Thu, 15 Jul 2021 23:46:27 GMT
- Title: Measuring Domain Knowledge for Early Prediction of Student Performance:
A Semantic Approach
- Authors: Anupam Khan, Sourav Ghosh, Soumya K. Ghosh
- Abstract summary: The researchers have used various predictors in performance modelling studies.
Association mining on nearly 0.35 million observations establishes that prior cognition impacts the student performance.
The proposed approach of measuring domain knowledge can help the early performance modelling studies to use it as a predictor.
- Score: 5.721241882795979
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The growing popularity of data mining catalyses the researchers to explore
various exciting aspects of education. Early prediction of student performance
is an emerging area among them. The researchers have used various predictors in
performance modelling studies. Although prior cognition can affect student
performance, establishing their relationship is still an open research
challenge. Quantifying the knowledge from readily available data is the major
challenge here. We have proposed a semantic approach for this purpose.
Association mining on nearly 0.35 million observations establishes that prior
cognition impacts the student performance. The proposed approach of measuring
domain knowledge can help the early performance modelling studies to use it as
a predictor.
Related papers
- Human Action Anticipation: A Survey [86.415721659234]
The literature on behavior prediction spans various tasks, including action anticipation, activity forecasting, intent prediction, goal prediction, and so on.
Our survey aims to tie together this fragmented literature, covering recent technical innovations as well as the development of new large-scale datasets for model training and evaluation.
arXiv Detail & Related papers (2024-10-17T21:37:40Z) - Bayesian Causal Forests for Longitudinal Data: Assessing the Impact of Part-Time Work on Growth in High School Mathematics Achievement [0.0]
We introduce a longitudinal extension of Bayesian Causal Forests.
This model allows for the flexible identification of both individual growth in mathematical ability and the effects of participation in part-time work.
Results reveal the negative impact of part time work for most students, but hint at potential benefits for those students with an initially low sense of school belonging.
arXiv Detail & Related papers (2024-07-16T17:18:33Z) - Machine Learning Predicts Upper Secondary Education Dropout as Early as the End of Primary School [0.0]
This study expanded the modeling horizon by utilizing a 13-year longitudinal dataset, encompassing data from kindergarten to Grade 9.
Our methodology incorporated a comprehensive range of parameters, including students' academic and cognitive skills, motivation, behavior, well-being, and officially recorded dropout data.
The machine learning models developed in this study demonstrated notable classification ability, achieving a mean area under the curve (AUC) of 0.61 with data up to Grade 6 and an improved AUC of 0.65 with data up to Grade 9.
arXiv Detail & Related papers (2024-03-01T13:18:08Z) - Causal Discovery and Counterfactual Explanations for Personalized
Student Learning [0.0]
The study's main contributions include using causal discovery to identify causal predictors of student performance.
The results reveal the identified causal relationships, such as the influence of earlier test grades and mathematical ability on final student performance.
A major challenge remains, which is the real-time implementation and validation of counterfactual recommendations.
arXiv Detail & Related papers (2023-09-18T10:32:47Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Tri-Branch Convolutional Neural Networks for Top-$k$ Focused Academic
Performance Prediction [28.383922154797315]
Academic performance prediction aims to leverage student-related information to predict their future academic outcomes.
In this paper, we analyze students' daily behavior trajectories, which can be comprehensively tracked with campus smartcard records.
We propose a novel Tri-Branch CNN architecture, which is equipped with row-wise, column-wise, and depth-wise convolution and attention operations.
arXiv Detail & Related papers (2021-07-22T02:35:36Z) - Predicting MOOCs Dropout Using Only Two Easily Obtainable Features from
the First Week's Activities [56.1344233010643]
Several features are considered to contribute towards learner attrition or lack of interest, which may lead to disengagement or total dropout.
This study aims to predict dropout early-on, from the first week, by comparing several machine-learning approaches.
arXiv Detail & Related papers (2020-08-12T10:44:49Z) - Social Engagement versus Learning Engagement -- An Exploratory Study of
FutureLearn Learners [61.58283466715385]
Massive Open Online Courses (MOOCs) continue to see increasing enrolment, but only a small percent of enrolees completes the MOOCs.
This study is particularly concerned with how learners interact with peers, along with their study progression in MOOCs.
The study was conducted on the less explored FutureLearn platform, which employs a social constructivist approach and promotes collaborative learning.
arXiv Detail & Related papers (2020-08-11T16:09:10Z) - Value-driven Hindsight Modelling [68.658900923595]
Value estimation is a critical component of the reinforcement learning (RL) paradigm.
Model learning can make use of the rich transition structure present in sequences of observations, but this approach is usually not sensitive to the reward function.
We develop an approach for representation learning in RL that sits in between these two extremes.
This provides tractable prediction targets that are directly relevant for a task, and can thus accelerate learning the value function.
arXiv Detail & Related papers (2020-02-19T18:10:20Z) - Academic Performance Estimation with Attention-based Graph Convolutional
Networks [17.985752744098267]
Given a student's past data, the task of student's performance prediction is to predict a student's grades in future courses.
Traditional methods for student's performance prediction usually neglect the underlying relationships between multiple courses.
We propose a novel attention-based graph convolutional networks model for student's performance prediction.
arXiv Detail & Related papers (2019-12-26T23:11:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.