論文の概要: Validation of RELU nets with tropical polyhedra
- arxiv url: http://arxiv.org/abs/2108.00893v1
- Date: Fri, 30 Jul 2021 06:22:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-05 06:40:22.747906
- Title: Validation of RELU nets with tropical polyhedra
- Title(参考訳): 熱帯ポリヘドラを用いたRELU網の検証
- Authors: Eric Goubault, S\'ebastien Palumby, Sylvie Putot, Louis Rustenholtz,
Sriram Sankaranarayanan
- Abstract要約: 本稿では,熱帯ポリヘドラを用いてReLUフィードフォワードニューラルネットワークを抽象化する手法を提案する。
本稿では、ReLUネットワークと熱帯有理関数の接続が、ReLUニューラルネットワークのレンジ解析にどのように役立つかを示す。
- 参考スコア(独自算出の注目度): 7.087237546722617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies the problem of range analysis for feedforward neural
networks, which is a basic primitive for applications such as robustness of
neural networks, compliance to specifications and reachability analysis of
neural-network feedback systems. Our approach focuses on ReLU (rectified linear
unit) feedforward neural nets that present specific difficulties: approaches
that exploit derivatives do not apply in general, the number of patterns of
neuron activations can be quite large even for small networks, and convex
approximations are generally too coarse. In this paper, we employ set-based
methods and abstract interpretation that have been very successful in coping
with similar difficulties in classical program verification. We present an
approach that abstracts ReLU feedforward neural networks using tropical
polyhedra. We show that tropical polyhedra can efficiently abstract ReLU
activation function, while being able to control the loss of precision due to
linear computations. We show how the connection between ReLU networks and
tropical rational functions can provide approaches for range analysis of ReLU
neural networks.
- Abstract(参考訳): 本稿では,ニューラルネットワークのロバスト性,仕様の遵守,ニューラルネットワークフィードバックシステムの到達可能性解析などの応用における基本的原理であるフィードフォワードニューラルネットワークのレンジ解析問題について検討する。
我々のアプローチは、特定の困難を呈するReLUフィードフォワードニューラルネットに焦点をあてる:デリバティブを利用するアプローチは一般的には適用されず、ニューロン活性化のパターンの数は小さなネットワークでもかなり大きくなり、凸近似は概して粗い。
本稿では,古典的プログラム検証における類似の困難に対処するのに非常に成功した集合ベース手法と抽象解釈を用いる。
本稿では,熱帯ポリヘドラを用いたReLUフィードフォワードニューラルネットワークの抽象化手法を提案する。
熱帯ポリヘドラは,線形計算による精度の低下を抑えつつ,ReLU活性化関数を効率的に抽象化できることを示す。
本稿では、ReLUネットワークと熱帯有理関数の接続が、ReLUニューラルネットワークのレンジ解析にどのように役立つかを示す。
関連論文リスト
- The sampling complexity of learning invertible residual neural networks [9.614718680817269]
フィードフォワードReLUニューラルネットワークをポイントサンプルから高い均一な精度で決定することは、次元性の呪いに苦しむことが示されている。
我々は、特定のニューラルネットワークアーキテクチャを制限することでサンプリングの複雑さを改善することができるかどうかを考察する。
我々の主な結果は、残差ニューラルネットワークアーキテクチャと可逆性は、より単純なフィードフォワードアーキテクチャで遭遇する複雑性障壁を克服する助けにならないことを示している。
論文 参考訳(メタデータ) (2024-11-08T10:00:40Z) - Topological obstruction to the training of shallow ReLU neural networks [0.0]
損失ランドスケープの幾何学と単純なニューラルネットワークの最適化軌跡との相互作用について検討する。
本稿では,勾配流を用いた浅部ReLUニューラルネットワークの損失景観におけるトポロジカル障害物の存在を明らかにする。
論文 参考訳(メタデータ) (2024-10-18T19:17:48Z) - When Deep Learning Meets Polyhedral Theory: A Survey [6.899761345257773]
過去10年間で、ディープ・ニューラル・ラーニングの顕著な精度のおかげで、ディープは予測モデリングの一般的な方法論となった。
一方、ニューラルネットワークの構造はより単純で線形な関数に収束した。
論文 参考訳(メタデータ) (2023-04-29T11:46:53Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Open- and Closed-Loop Neural Network Verification using Polynomial
Zonotopes [6.591194329459251]
本稿では, 密接な非接触活性化関数を効率的に計算するための新しい手法を提案する。
特に,各ニューロンの入力出力関係を近似を用いて評価する。
その結果、他の手法よりも優れた性能が得られる。
論文 参考訳(メタデータ) (2022-07-06T14:39:19Z) - Generalization Error Bounds for Iterative Recovery Algorithms Unfolded
as Neural Networks [6.173968909465726]
線形測定の少ないスパース再構成に適したニューラルネットワークの一般クラスを導入する。
層間の重量共有を広範囲に行うことで、全く異なるニューラルネットワークタイプに対する統一的な分析を可能にします。
論文 参考訳(メタデータ) (2021-12-08T16:17:33Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
本稿では,線形近似ニューラルネットワーク(LANN)を提案する。
ニューラルネットワークのトレーニングプロセスを実験的に検討し、オーバーフィッティングを検出する。
我々は、$L1$と$L2$正規化がモデルの複雑さの増加を抑制することを発見した。
論文 参考訳(メタデータ) (2020-06-16T07:38:06Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。