論文の概要: When Deep Learning Meets Polyhedral Theory: A Survey
- arxiv url: http://arxiv.org/abs/2305.00241v2
- Date: Thu, 31 Aug 2023 13:36:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-01 20:19:38.095216
- Title: When Deep Learning Meets Polyhedral Theory: A Survey
- Title(参考訳): ディープラーニングが多面体理論を満たすとき:調査
- Authors: Joey Huchette, Gonzalo Mu\~noz, Thiago Serra, Calvin Tsay
- Abstract要約: 過去10年間で、ディープ・ニューラル・ラーニングの顕著な精度のおかげで、ディープは予測モデリングの一般的な方法論となった。
一方、ニューラルネットワークの構造はより単純で線形な関数に収束した。
- 参考スコア(独自算出の注目度): 6.899761345257773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past decade, deep learning became the prevalent methodology for
predictive modeling thanks to the remarkable accuracy of deep neural networks
in tasks such as computer vision and natural language processing. Meanwhile,
the structure of neural networks converged back to simpler representations
based on piecewise constant and piecewise linear functions such as the
Rectified Linear Unit (ReLU), which became the most commonly used type of
activation function in neural networks. That made certain types of network
structure $\unicode{x2014}$such as the typical fully-connected feedforward
neural network$\unicode{x2014}$ amenable to analysis through polyhedral theory
and to the application of methodologies such as Linear Programming (LP) and
Mixed-Integer Linear Programming (MILP) for a variety of purposes. In this
paper, we survey the main topics emerging from this fast-paced area of work,
which bring a fresh perspective to understanding neural networks in more detail
as well as to applying linear optimization techniques to train, verify, and
reduce the size of such networks.
- Abstract(参考訳): 過去10年間、コンピュータビジョンや自然言語処理といったタスクにおけるディープニューラルネットワークの驚くべき精度のおかげで、ディープラーニングは予測モデリングの一般的な方法論となった。
一方、ニューラルネットワークの構造はより単純な表現に収束し、Rectified Linear Unit (ReLU) のような断片的定数と断片的線形関数がニューラルネットワークで最もよく使われるタイプのアクティベーション関数となった。
これにより、ある種のネットワーク構造を$\unicode{x2014}$、一般的な完全連結フィードフォワードニューラルネットワーク$\unicode{x2014}$、多面体理論による解析や線形計画法(LP)や混合整数線形計画法(MILP)といった様々な目的に応用することができる。
本稿では、ニューラルネットワークのより詳細な理解と、ネットワークのサイズを訓練、検証、縮小するための線形最適化手法の適用に新たな視点をもたらす。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Riemannian Residual Neural Networks [58.925132597945634]
残余ニューラルネットワーク(ResNet)の拡張方法を示す。
ResNetは、機械学習において、有益な学習特性、優れた経験的結果、そして様々なニューラルネットワークを構築する際に容易に組み込める性質のために、ユビキタスになった。
論文 参考訳(メタデータ) (2023-10-16T02:12:32Z) - Deep Learning Meets Sparse Regularization: A Signal Processing
Perspective [17.12783792226575]
データに適合するように訓練されたニューラルネットワークの機能特性を特徴付ける数学的枠組みを提案する。
このフレームワークをサポートする主要な数学的ツールは、変換領域スパース正規化、計算トモグラフィーのラドン変換、近似理論である。
このフレームワークは、ニューラルネットワークトレーニングにおける重量減衰正則化の効果、ネットワークアーキテクチャにおけるスキップ接続と低ランク重量行列の使用、ニューラルネットワークにおける空間性の役割、そしてニューラルネットワークが高次元問題でうまく機能する理由を説明する。
論文 参考訳(メタデータ) (2023-01-23T17:16:21Z) - Generalization Error Bounds for Iterative Recovery Algorithms Unfolded
as Neural Networks [6.173968909465726]
線形測定の少ないスパース再構成に適したニューラルネットワークの一般クラスを導入する。
層間の重量共有を広範囲に行うことで、全く異なるニューラルネットワークタイプに対する統一的な分析を可能にします。
論文 参考訳(メタデータ) (2021-12-08T16:17:33Z) - Neural networks with linear threshold activations: structure and
algorithms [1.795561427808824]
クラス内で表現可能な関数を表現するのに、2つの隠れたレイヤが必要であることを示す。
また、クラス内の任意の関数を表すのに必要なニューラルネットワークのサイズについて、正確な境界を与える。
我々は,線形しきい値ネットワークと呼ばれるニューラルネットワークの新たなクラスを提案する。
論文 参考訳(メタデータ) (2021-11-15T22:33:52Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
ある無限大のニューラルネットワークにおいて、ニューラル・タンジェント・カーネル(NTK)理論は一般化を完全に特徴づける。
線形近似は、ニューラルネットワークの特定のタスクの学習複雑性を確実にランク付けできることを示す。
我々の研究は、将来の理論的研究を刺激する新しい深層学習現象の具体例を提供する。
論文 参考訳(メタデータ) (2021-06-12T13:05:11Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Fast Adaptation with Linearized Neural Networks [35.43406281230279]
ニューラルネットワークの線形化の帰納的バイアスについて検討し,全ネットワーク関数の驚くほどよい要約であることを示した。
この発見に触発されて,これらの帰納的バイアスをネットワークのヤコビアンから設計されたカーネルを通してガウス過程に埋め込む手法を提案する。
この設定では、領域適応は不確実性推定を伴う解釈可能な後方推論の形式を取る。
論文 参考訳(メタデータ) (2021-03-02T03:23:03Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Lossless Compression of Deep Neural Networks [17.753357839478575]
ディープニューラルネットワークは、画像や言語認識など、多くの予測モデリングタスクで成功している。
モバイルデバイスのような限られた計算資源の下でこれらのネットワークをデプロイすることは困難である。
生成した出力を変更せずに、ニューラルネットワークの単位と層を除去するアルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-01-01T15:04:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。