論文の概要: PDE-GCN: Novel Architectures for Graph Neural Networks Motivated by
Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2108.01938v1
- Date: Wed, 4 Aug 2021 09:59:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-05 13:22:15.908525
- Title: PDE-GCN: Novel Architectures for Graph Neural Networks Motivated by
Partial Differential Equations
- Title(参考訳): PDE-GCN:部分微分方程式によるグラフニューラルネットワークの新しいアーキテクチャ
- Authors: Moshe Eliasof, Eldad Haber, Eran Treister
- Abstract要約: ディープグラフネットワークは、浅いグラフネットワークよりも必ずしもパフォーマンスが良いとは限らない。
この行動は通常、過度に滑らかな現象に起因している。
我々は、この振る舞いを設計によって制御するアーキテクチャのファミリーを提案する。
- 参考スコア(独自算出の注目度): 12.53670196903443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks are increasingly becoming the go-to approach in various
fields such as computer vision, computational biology and chemistry, where data
are naturally explained by graphs. However, unlike traditional convolutional
neural networks, deep graph networks do not necessarily yield better
performance than shallow graph networks. This behavior usually stems from the
over-smoothing phenomenon. In this work, we propose a family of architectures
to control this behavior by design. Our networks are motivated by numerical
methods for solving Partial Differential Equations (PDEs) on manifolds, and as
such, their behavior can be explained by similar analysis. Moreover, as we
demonstrate using an extensive set of experiments, our PDE-motivated networks
can generalize and be effective for various types of problems from different
fields. Our architectures obtain better or on par with the current
state-of-the-art results for problems that are typically approached using
different architectures.
- Abstract(参考訳): グラフニューラルネットワークは、コンピュータビジョン、計算生物学、化学など、グラフによって自然に説明される様々な分野において、ますますゴーツーアプローチになりつつある。
しかし、従来の畳み込みニューラルネットワークとは異なり、ディープグラフネットワークは必ずしも浅いグラフネットワークよりも優れたパフォーマンスをもたらすわけではない。
この行動は通常、過度に滑らかな現象に由来する。
本研究では,この動作を設計によって制御するアーキテクチャのファミリを提案する。
我々のネットワークは、多様体上の偏微分方程式(pdes)を解く数値解法に動機付けられており、その挙動は同様の解析によって説明できる。
さらに,大規模な実験を用いてPDEを動機とするネットワークを一般化し,様々な分野の様々な問題に対して有効であることを示す。
私たちのアーキテクチャは、通常、異なるアーキテクチャを使ってアプローチされる問題に対して、現在の最先端の結果と良く、あるいは同等に得られます。
関連論文リスト
- First-order PDES for Graph Neural Networks: Advection And Burgers Equation Models [1.4174475093445238]
本稿では,2つの一階偏微分方程式(PDE)を組み込んだ新しいグラフニューラルネットワークモデルを提案する。
実験結果から,高次PDEモデルと同等の結果を得るための新しいPDEモデルの能力を強調し,最大64層までのオーバースムーシング問題を修正した。
結果は,GNNの適応性と汎用性を強調し,従来の手法と同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2024-04-03T21:47:02Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Neural Fractional Differential Equations [2.812395851874055]
FDE(Fractional Differential Equations)は、科学や工学において複雑なシステムをモデル化するための重要なツールである。
我々は、FDEをデータのダイナミックスに調整する新しいディープニューラルネットワークアーキテクチャであるNeural FDEを提案する。
論文 参考訳(メタデータ) (2024-03-05T07:45:29Z) - Weisfeiler and Leman Go Relational [4.29881872550313]
本稿では,よく知られたGCNおよびコンポジションGCNアーキテクチャの表現力の限界について検討する。
上記の2つのアーキテクチャの制限を確実に克服する$k$-RNアーキテクチャを導入します。
論文 参考訳(メタデータ) (2022-11-30T15:56:46Z) - Neuro-symbolic computing with spiking neural networks [0.6035125735474387]
我々は、スパイクベースのグラフアルゴリズムに関するこれまでの研究を、スパイクニューロンを用いてシンボリックおよびマルチリレーショナル情報をエンコードする方法を実証することによって拡張した。
導入されたフレームワークは、グラフ埋め込みパラダイムと、エラーバックプロパゲーションを用いたスパイクニューラルネットワークのトレーニングの最近の進歩を組み合わせることで実現されている。
論文 参考訳(メタデータ) (2022-08-04T10:49:34Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - RAN-GNNs: breaking the capacity limits of graph neural networks [43.66682619000099]
グラフニューラルネットワークは、グラフ上で定義されたデータの学習と分析に対処する問題の中心となっている。
最近の研究では、複数の近隣サイズを同時に考慮し、適応的にそれらを調整する必要があるためです。
ランダムに配線されたアーキテクチャを用いることで、ネットワークの容量を増大させ、よりリッチな表現を得ることができることを示す。
論文 参考訳(メタデータ) (2021-03-29T12:34:36Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
この作業はニューラルネットワークを一般化し、無限次元空間(演算子)間の写像を学習できるようにすることである。
非線形活性化関数と積分作用素のクラスを構成することにより、無限次元写像の近似を定式化する。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
論文 参考訳(メタデータ) (2020-03-07T01:56:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。