論文の概要: Neural Operator: Graph Kernel Network for Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2003.03485v1
- Date: Sat, 7 Mar 2020 01:56:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 19:32:20.120404
- Title: Neural Operator: Graph Kernel Network for Partial Differential Equations
- Title(参考訳): ニューラルネットワーク:部分微分方程式のためのグラフカーネルネットワーク
- Authors: Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu,
Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar
- Abstract要約: この作業はニューラルネットワークを一般化し、無限次元空間(演算子)間の写像を学習できるようにすることである。
非線形活性化関数と積分作用素のクラスを構成することにより、無限次元写像の近似を定式化する。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
- 参考スコア(独自算出の注目度): 57.90284928158383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The classical development of neural networks has been primarily for mappings
between a finite-dimensional Euclidean space and a set of classes, or between
two finite-dimensional Euclidean spaces. The purpose of this work is to
generalize neural networks so that they can learn mappings between
infinite-dimensional spaces (operators). The key innovation in our work is that
a single set of network parameters, within a carefully designed network
architecture, may be used to describe mappings between infinite-dimensional
spaces and between different finite-dimensional approximations of those spaces.
We formulate approximation of the infinite-dimensional mapping by composing
nonlinear activation functions and a class of integral operators. The kernel
integration is computed by message passing on graph networks. This approach has
substantial practical consequences which we will illustrate in the context of
mappings between input data to partial differential equations (PDEs) and their
solutions. In this context, such learned networks can generalize among
different approximation methods for the PDE (such as finite difference or
finite element methods) and among approximations corresponding to different
underlying levels of resolution and discretization. Experiments confirm that
the proposed graph kernel network does have the desired properties and show
competitive performance compared to the state of the art solvers.
- Abstract(参考訳): ニューラルネットワークの古典的な発展は、主に有限次元ユークリッド空間とクラスの集合、あるいは2つの有限次元ユークリッド空間の間の写像である。
この研究の目的は、ニューラルネットワークを一般化し、無限次元空間(オペレータ)間のマッピングを学ぶことである。
我々の研究における重要な革新は、慎重に設計されたネットワークアーキテクチャにおいて、一組のネットワークパラメータが無限次元空間とそれらの空間の異なる有限次元近似の間の写像を記述するために使われることである。
非線形活性化関数と積分作用素のクラスを合成して無限次元写像の近似を定式化する。
カーネル統合は、グラフネットワーク上のメッセージパッシングによって計算される。
このアプローチは、入力データから偏微分方程式(PDE)とその解への写像の文脈において、かなり実用的な結果をもたらす。
この文脈において、そのような学習されたネットワークは、pdeの異なる近似法(有限差分法や有限要素法など)と、異なる分解レベルと離散化に対応する近似の間で一般化することができる。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
関連論文リスト
- Operator Learning with Neural Fields: Tackling PDEs on General
Geometries [15.65577053925333]
偏微分方程式を解くための機械学習アプローチは、関数空間間の学習写像を必要とする。
新しいコーラル法は、いくつかの一般的な制約に基づいてPDEのための座標ベースのネットワークを利用する。
論文 参考訳(メタデータ) (2023-06-12T17:52:39Z) - Predictions Based on Pixel Data: Insights from PDEs and Finite Differences [0.0]
本稿では,各観測が行列である時間列の近似を扱う。
比較的小さなネットワークでは、直線法に基づいて、PDEの数値的な離散化のクラスを正確に表現できることが示される。
我々のネットワークアーキテクチャは、典型的に時系列の近似に採用されているものから着想を得ている。
論文 参考訳(メタデータ) (2023-05-01T08:54:45Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Discretization Invariant Networks for Learning Maps between Neural
Fields [3.09125960098955]
離散化不変ニューラルネットワーク(DI-Net)の理解と設計のための新しいフレームワークを提案する。
我々の分析は、異なる有限離散化の下でのモデル出力の偏差の上限を確立する。
構成により、DI-Netsは可積分函数空間間の大きな写像のクラスを普遍的に近似することが証明される。
論文 参考訳(メタデータ) (2022-06-02T17:44:03Z) - A singular Riemannian geometry approach to Deep Neural Networks II.
Reconstruction of 1-D equivalence classes [78.120734120667]
入力空間における出力多様体内の点の事前像を構築する。
我々は、n-次元実空間から(n-1)-次元実空間へのニューラルネットワークマップの場合の簡易性に焦点をあてる。
論文 参考訳(メタデータ) (2021-12-17T11:47:45Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
本稿では,無限次元関数空間間を写像する演算子,いわゆるニューラル演算子を学習するためのニューラルネットワークの一般化を提案する。
提案したニューラル作用素に対して普遍近似定理を証明し、任意の非線形連続作用素を近似することができることを示す。
ニューラル作用素に対する重要な応用は、偏微分方程式の解作用素に対する代理写像を学習することである。
論文 参考訳(メタデータ) (2021-08-19T03:56:49Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Model Reduction and Neural Networks for Parametric PDEs [9.405458160620533]
無限次元空間間の入出力マップをデータ駆動で近似するフレームワークを開発した。
提案されたアプローチは、最近のニューラルネットワークとディープラーニングの成功に動機づけられている。
入力出力マップのクラスと、入力に対する適切な選択された確率測度について、提案手法の収束性を証明する。
論文 参考訳(メタデータ) (2020-05-07T00:09:27Z) - Solving inverse-PDE problems with physics-aware neural networks [0.0]
偏微分方程式の逆問題における未知の場を見つけるための新しい枠組みを提案する。
我々は,ディープニューラルネットワークの高表現性を,既存の数値アルゴリズムの精度と信頼性とを融合した普遍関数推定器とする。
論文 参考訳(メタデータ) (2020-01-10T18:46:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。