論文の概要: Machine Learning Classification and Portfolio Allocation: with Implications from Machine Uncertainty
- arxiv url: http://arxiv.org/abs/2108.02283v2
- Date: Wed, 23 Jul 2025 15:52:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:40.020645
- Title: Machine Learning Classification and Portfolio Allocation: with Implications from Machine Uncertainty
- Title(参考訳): 機械学習の分類とポートフォリオ割当--マシンの不確かさから
- Authors: Yang Bai, Kuntara Pukthuanthong,
- Abstract要約: マルチクラス機械学習分類器を使用して、他の株より優れているか、または劣っている株を識別する。
その結果得られた長短ポートフォリオは、毎年1.67(価値重み)と3.35(等重み)のシャープ比を達成する。
これらの結果は、機械学習のレグレッションを制御した後も継続し、大口株の間では堅牢なままである。
- 参考スコア(独自算出の注目度): 7.175376245455319
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We use multi-class machine learning classifiers to identify the stocks that outperform or underperform other stocks. The resulting long-short portfolios achieve annual Sharpe ratios of 1.67 (value-weighted) and 3.35 (equal-weighted), with annual alphas ranging from 29\% to 48\%. These results persist after controlling for machine learning regressions and remain robust among large-cap stocks. Machine uncertainty, as measured by predicted probabilities, impairs the prediction performance. Stocks with higher machine uncertainty experience lower returns, particularly when human proxies of information uncertainty align with machine uncertainty. Consistent with the literature, such an effect is driven by the past underperformers.
- Abstract(参考訳): マルチクラス機械学習分類器を使用して、他の株より優れているか、または劣っている株を識別する。
その結果得られる長短のポートフォリオはシャープ比が1.67(価値重み)と3.35(等級重み)となり、アルファは29\%から48\%である。
これらの結果は、機械学習のレグレッションを制御した後も継続し、大口株の間では堅牢なままである。
予測確率によって測定される機械の不確実性は、予測性能を損なう。
マシンの不確実性が高い株は、特に人間の情報不確実性のプロキシがマシンの不確実性と一致した場合、リターンを低下させる。
文献に従えば、そのような効果は過去のアンダーパフォーマーによってもたらされる。
関連論文リスト
- Overparametrized models with posterior drift [0.0]
本稿では,過度にパラメータ化された機械学習モデルにおいて,後方ドリフトがサンプル外予測精度に与える影響について検討する。
平均的な投資家にとって、15年間の持株期間に焦点を合わせると、非常に異質なリターンが得られます。
全体として、当社の調査結果は、株式市場の予測のために大規模な線形モデルを利用する場合、慎重さを推奨する傾向にある。
論文 参考訳(メタデータ) (2025-06-30T08:31:15Z) - A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
大規模言語モデル(LLM)における最初の形式的確率的評価フレームワークを紹介する。
モデルの出力分布に関する高い確率保証を持つ新しい指標を導出する。
私たちのメトリクスはアプリケーションに依存しないので、デプロイ前にモデル機能についてより信頼性の高い見積を行うことができます。
論文 参考訳(メタデータ) (2024-10-04T15:44:23Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Short-Term Stock Price Forecasting using exogenous variables and Machine
Learning Algorithms [3.2732602885346576]
この研究論文は、2020年3月から2022年5月までにニューヨークで取引された3つの有名な株の予測において、4つの機械学習モデルとそれらの精度を比較した。
我々は,XGBoost,Random Forest,Multi-layer Perceptron,Support Vector Regressionモデルをデプロイし,開発し,チューニングする。
XGBoostは、240のトレーディングデイからなるトレーニングデータセットを使用して、より長い実行にもかかわらず、最も高い精度を提供する。
論文 参考訳(メタデータ) (2023-05-17T07:04:32Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Application of supervised learning models in the Chinese futures market [0.0]
本稿では,先物価格の傾向を予測するための教師付き学習モデルを構築し,その予測結果に基づいてトレーディング戦略を設計する。
分類問題の精度,リコール,F1スコアは,今後の価格変動の分類の精度要件を満たすことを示唆している。
論文 参考訳(メタデータ) (2023-03-08T13:56:53Z) - Empirical Asset Pricing via Ensemble Gaussian Process Regression [4.281723404774889]
我々のアンサンブル学習アプローチは、GPR推論に固有の計算複雑性を著しく減少させる。
本手法は,統計的,経済的に既存の機械学習モデルを支配している。
これは不確実な投資家にアピールし、S&P500を上回る等級と重み付けの予測対象ポートフォリオを圧倒的に上回っている。
論文 参考訳(メタデータ) (2022-12-02T09:37:29Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Evaluating Machine Unlearning via Epistemic Uncertainty [78.27542864367821]
本研究では,不確実性に基づく機械学習アルゴリズムの評価を行う。
これは私たちの最良の知識の一般的な評価の最初の定義です。
論文 参考訳(メタデータ) (2022-08-23T09:37:31Z) - Machine Learning for Stock Prediction Based on Fundamental Analysis [13.920569652186714]
フィードフォワードニューラルネットワーク(FNN)、ランダムフォレスト(RF)、適応型ニューラルファジィ推論システム(ANFIS)の3つの機械学習アルゴリズムについて検討する。
RFモデルは最高の予測結果を達成し,FNNとANFISのテスト性能を向上させることができる。
この結果から, 機械学習モデルは, 株式投資に関する意思決定において, 基礎アナリストの助けとなる可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-26T18:48:51Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
本研究では,現実の大規模データセットにおける信頼性の予測問題について検討する。
我々は、先行技術損失関数で訓練された信頼性予測器が、正しい予測と誤った予測の両方を信頼に値するものとみなす傾向があることを観察する。
そこで我々は,2つのスライド状の曲線による不正確な予測から,特徴w.r.t.正しい予測を分離する,新たな急勾配損失を提案する。
論文 参考訳(メタデータ) (2021-09-30T19:19:09Z) - Economic Recession Prediction Using Deep Neural Network [26.504845007567972]
本稿では,米国における景気後退の開始と終了を予測するための最も正確なモデルとして,オートエンコーダを用いたBi-LSTMの深層学習手法を同定する。
我々は、さまざまな機械学習モデルの能力を比較して、サンプル内とサンプル外の両方で優れた予測を生成するために、一般的なマクロおよびマーケットコンディション機能を採用する。
論文 参考訳(メタデータ) (2021-07-21T22:55:14Z) - Uncertainty Prediction for Machine Learning Models of Material
Properties [0.0]
物質特性のAIベースの予測の不確実性は、物質科学におけるAIアプリケーションの成功と信頼性にとって非常に重要である。
このような個人的不確実性を得るための3つの異なるアプローチを比較し、それらを12のML物理特性で検証する。
論文 参考訳(メタデータ) (2021-07-16T16:33:55Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Design and Analysis of Robust Deep Learning Models for Stock Price
Prediction [0.0]
株価と株価の動きの堅牢かつ正確な予測のための予測モデルを構築することは、解決すべき課題である。
本章では、インド国立証券取引所(NSE)の多角化部門に上場する株式の将来価格の堅牢かつ正確な予測のために、ディープラーニングアーキテクチャ上に構築された予測回帰モデル集を提案する。
論文 参考訳(メタデータ) (2021-06-17T17:15:02Z) - Predicting Recession Probabilities Using Term Spreads: New Evidence from
a Machine Learning Approach [0.0]
我々は、機械学習を用いて、金利の予測能力を改善することができるかどうかを調査する。
機械学習アルゴリズムは最適な成熟度ペアを特定し、利子率の効果を拡散した用語と区別する。
私達の発見は10年3か月の財務収支の広がりの従来の使用を支えます。
論文 参考訳(メタデータ) (2021-01-23T01:26:54Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
我々は、モデル損失関数の影響関数を利用して、予測信頼区間のジャックニフェ(または、アウト・ワン・アウト)推定器を構築する頻繁な手順を開発する。
1)および(2)を満たすDJは、幅広いディープラーニングモデルに適用可能であり、実装が容易であり、モデルトレーニングに干渉したり、精度を妥協したりすることなく、ポストホックな方法で適用することができる。
論文 参考訳(メタデータ) (2020-06-29T13:36:52Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
我々は、ロバストなイソペリメトリに関する確率論の最近のブレークスルーを含む、新しいツールを開発し、活用する。
この結果から,データの不均衡時に増加する標準精度とロバスト精度の基本的なトレードオフが明らかになった。
論文 参考訳(メタデータ) (2020-06-09T09:58:19Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
我々は、統計的、機械学習、ディープラーニングモデルの集合から成り立つ、非常に堅牢で正確な株価予測の枠組みを提示する。
当社は、インドの国立証券取引所(NSE)に上場している非常に有名な企業の、毎日の株価データを5分間隔で収集しています。
統計,機械学習,深層学習を組み合わせたモデル構築の凝集的アプローチは,株価データの揮発性およびランダムな動きパターンから極めて効果的に学習できる,と我々は主張する。
論文 参考訳(メタデータ) (2020-04-17T19:41:22Z) - Value-driven Hindsight Modelling [68.658900923595]
値推定は強化学習(RL)パラダイムの重要な構成要素である。
モデル学習は、観測系列に存在する豊富な遷移構造を利用することができるが、このアプローチは通常、報酬関数に敏感ではない。
この2つの極点の間に位置するRLにおける表現学習のアプローチを開発する。
これにより、タスクに直接関連し、値関数の学習を加速できる、抽出可能な予測ターゲットが提供される。
論文 参考訳(メタデータ) (2020-02-19T18:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。