論文の概要: GENder-IT: An Annotated English-Italian Parallel Challenge Set for
Cross-Linguistic Natural Gender Phenomena
- arxiv url: http://arxiv.org/abs/2108.02854v1
- Date: Thu, 5 Aug 2021 21:08:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-09 14:42:06.565626
- Title: GENder-IT: An Annotated English-Italian Parallel Challenge Set for
Cross-Linguistic Natural Gender Phenomena
- Title(参考訳): gender-it:クロス言語自然性現象のためのアノテーション付き英語とイタリア語の並列チャレンジセット
- Authors: Eva Vanmassenhove, Johanna Monti
- Abstract要約: gENder-ITは、自然のジェンダー現象の解決に焦点を当てた、英語とイタリア語の課題セットである。
英語のソース側には単語レベルのジェンダータグ、イタリア語のターゲット側には翻訳が必要な複数のジェンダータグを提供する。
- 参考スコア(独自算出の注目度): 2.4366811507669124
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Languages differ in terms of the absence or presence of gender features, the
number of gender classes and whether and where gender features are explicitly
marked. These cross-linguistic differences can lead to ambiguities that are
difficult to resolve, especially for sentence-level MT systems. The
identification of ambiguity and its subsequent resolution is a challenging task
for which currently there aren't any specific resources or challenge sets
available. In this paper, we introduce gENder-IT, an English--Italian challenge
set focusing on the resolution of natural gender phenomena by providing
word-level gender tags on the English source side and multiple gender
alternative translations, where needed, on the Italian target side.
- Abstract(参考訳): 言語は、性別的特徴の欠如、性別的階級の数、性別的特徴が明確にマークされているかどうかという点で異なる。
これらの言語間の差異は、特に文レベルのMTシステムでは解決が難しい曖昧さにつながる可能性がある。
曖昧さの識別とその後の解決は、現在利用可能な特定のリソースやチャレンジセットが存在しないため、難しい課題である。
本稿では、英語のソース側で単語レベルのジェンダータグと、必要であればイタリア語のターゲット側で複数のジェンダー代替翻訳を提供することにより、自然性現象の解決に焦点を当てた英語-イタリア語の課題セットであるgENder-ITを紹介する。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - What an Elegant Bridge: Multilingual LLMs are Biased Similarly in Different Languages [51.0349882045866]
本稿では,Large Language Models (LLMs) の文法的ジェンダーのレンズによるバイアスについて検討する。
様々な言語における形容詞を持つ名詞を記述するためのモデルを提案し,特に文法性のある言語に焦点を当てた。
単純な分類器は、偶然以上の名詞の性別を予測できるだけでなく、言語間の移動可能性も示せる。
論文 参考訳(メタデータ) (2024-07-12T22:10:16Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Gender, names and other mysteries: Towards the ambiguous for
gender-inclusive translation [7.322734499960981]
本稿では,元文が明示的なジェンダーマーカーを欠いている場合について考察するが,目的文はより豊かな文法的ジェンダーによってそれらを含む。
MTデータ中の多くの名前と性別の共起は、ソース言語の「あいまいな性別」で解決できないことがわかった。
ジェンダー・インクルージョンの両面での曖昧さを受け入れるジェンダー・インクルージョン・トランスフォーメーションの可能性について論じる。
論文 参考訳(メタデータ) (2023-06-07T16:21:59Z) - Gender Neutralization for an Inclusive Machine Translation: from
Theoretical Foundations to Open Challenges [11.37307883423629]
我々は,ジェンダー・ニュートラル・トランスフォーメーション(GNT)をジェンダー・インクリシティーの一形態として検討し,マシン・トランスフォーメーション(MT)モデルによって達成される目標について検討する。
具体的には、ジェンダー関連言語移行問題を表す言語対である、英語からイタリア語への翻訳に焦点を当てる。
論文 参考訳(メタデータ) (2023-01-24T15:26:36Z) - Analyzing Gender Representation in Multilingual Models [59.21915055702203]
実践的なケーススタディとして,ジェンダーの区別の表現に焦点をあてる。
ジェンダーの概念が、異なる言語で共有された部分空間にエンコードされる範囲について検討する。
論文 参考訳(メタデータ) (2022-04-20T00:13:01Z) - Under the Morphosyntactic Lens: A Multifaceted Evaluation of Gender Bias
in Speech Translation [20.39599469927542]
ジェンダーバイアスは言語技術に影響を及ぼす問題として広く認識されている。
現代の評価慣行のほとんどは、合成条件下での職業名詞の狭いセットに単語レベルの焦点をあてている。
このようなプロトコルは、性合意のモルフォシンタクティック連鎖を特徴とする文法性言語の重要な特徴を見落としている。
論文 参考訳(メタデータ) (2022-03-18T11:14:16Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
私たちは、英語でジェンダーインクルージョンを促進する一般的な方法である特異点についてケーススタディを行います。
本研究では, 人為的データを持たない1%の単語誤り率で, ジェンダーニュートラルな英語を学習できるモデルについて述べる。
論文 参考訳(メタデータ) (2021-02-12T21:47:48Z) - Neural Machine Translation Doesn't Translate Gender Coreference Right
Unless You Make It [18.148675498274866]
ニューラル・マシン・トランスフォーメーションに明示的な単語レベルのジェンダー・インフレクション・タグを組み込む手法を提案する。
既存の単純なアプローチは、文中の複数のエンティティにジェンダー・フィーチャーを過度に一般化することができる。
また,英語のジェンダーニュートラルな実体の翻訳を,それに対応する言語規則で評価する拡張も提案する。
論文 参考訳(メタデータ) (2020-10-11T20:05:42Z) - Type B Reflexivization as an Unambiguous Testbed for Multilingual
Multi-Task Gender Bias [5.239305978984572]
我々は,B型回帰型言語の場合,性別バイアスを検出するためにマルチタスクチャレンジデータセットを構築することができることを示した。
これらの言語では「医者がマスクを取り除いた」という直訳は中音読みと不一致読みのあいまいさではない。
4つの言語と4つのNLPタスクにまたがる多言語・マルチタスク課題データセットを提案する。
論文 参考訳(メタデータ) (2020-09-24T23:47:18Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。