論文の概要: Operational Learning-based Boundary Estimation in Electromagnetic
Medical Imaging
- arxiv url: http://arxiv.org/abs/2108.03233v1
- Date: Wed, 4 Aug 2021 12:39:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-15 11:34:08.887188
- Title: Operational Learning-based Boundary Estimation in Electromagnetic
Medical Imaging
- Title(参考訳): 電磁医用画像における演算学習に基づく境界推定
- Authors: A. Al-Saffar, A. Stancombe, A. Zamani, A. Abbosh
- Abstract要約: 同じ電磁画像データを用いて画像の境界を推定するために,学習に基づく手法を提案する。
16素子アンテナアレイを用いた頭部イメージングシステムを用いて, 独立臨床試験により, 学習モデルを検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Incorporating boundaries of the imaging object as a priori information to
imaging algorithms can significantly improve the performance of electromagnetic
medical imaging systems. To avoid overly complicating the system by using
different sensors and the adverse effect of the subject's movement, a
learning-based method is proposed to estimate the boundary (external contour)
of the imaged object using the same electromagnetic imaging data. While imaging
techniques may discard the reflection coefficients for being dominant and
uninformative for imaging, these parameters are made use of for boundary
detection. The learned model is verified through independent clinical human
trials by using a head imaging system with a 16-element antenna array that
works across the band 0.7-1.6 GHz. The evaluation demonstrated that the model
achieves average dissimilarity of 0.012 in Hu-moment while detecting head
boundary. The model enables fast scan and image creation while eliminating the
need for additional devices for accurate boundary estimation.
- Abstract(参考訳): 撮像アルゴリズムの優先情報として撮像対象の境界を組み込むことで、電磁医療画像システムの性能を大幅に向上させることができる。
異なるセンサと被験者の動きの悪影響を利用してシステムを過度に複雑化するのを避けるために,同じ電磁画像データを用いて画像の境界(外部輪郭)を推定する学習法を提案した。
イメージング技術は、画像に支配的かつ非形成的であるために反射係数を破棄するが、これらのパラメータは境界検出に使用される。
学習モデルは、0.7-1.6ghz帯で動作する16素子アンテナアレイを用いた頭部イメージングシステムを用いて、独立した臨床試験を通じて検証される。
評価の結果,Huモーメントにおける平均0.012の相似性は頭部境界を検知しながら達成できた。
このモデルは、正確な境界推定のための追加デバイスを不要にしながら、高速なスキャンと画像生成を可能にする。
関連論文リスト
- Private, Efficient and Scalable Kernel Learning for Medical Image Analysis [1.7999333451993955]
OKRA(Orthonormal K-fRAmes)は、カーネルベースの機械学習のための新しいランダム化符号化ベースのアプローチである。
現在の最先端ソリューションと比較して、スケーラビリティとスピードが大幅に向上します。
論文 参考訳(メタデータ) (2024-10-21T10:03:03Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Advancements in Feature Extraction Recognition of Medical Imaging Systems Through Deep Learning Technique [0.36651088217486427]
高速な画像認識を実現するために,重みに基づく目的関数を提案する。
単純なアルゴリズムを用いたしきい値最適化手法を提案する。
異なる種類のオブジェクトは互いに独立しており、画像処理においてコンパクトであることがわかった。
論文 参考訳(メタデータ) (2024-05-23T04:46:51Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Object Detection for Automated Coronary Artery Using Deep Learning [0.0]
本稿では,冠動脈狭窄の部位を正確に同定するために,X線血管造影画像の物体検出法を応用した。
このモデルにより,狭窄箇所の自動的かつリアルタイムな検出が可能となり,決定プロセスの重要かつ機密性の高い支援が可能となった。
論文 参考訳(メタデータ) (2023-12-19T13:14:52Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Deep Learning Approach for Hyperspectral Image Demosaicking, Spectral
Correction and High-resolution RGB Reconstruction [3.0478210530038443]
教師付き学習手法を用いたハイパースペクトル画像のスナップショット化のための深層学習に基づく画像復号アルゴリズムを提案する。
医用画像が公開されていないため,既存の医用画像データセットからのスナップショット画像をシミュレートする合成画像生成手法が提案されている。
得られたデシック画像は定量的かつ質的に評価され、画像品質の明確な改善が示される。
論文 参考訳(メタデータ) (2021-09-03T09:50:03Z) - Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
Solution Characterization for Computational Imaging [11.677576854233394]
本稿では,再構成の不確かさを定量化するために,変分深い確率的イメージング手法を提案する。
Deep Probabilistic Imagingは、未学習の深部生成モデルを用いて、未観測画像の後部分布を推定する。
論文 参考訳(メタデータ) (2020-10-27T17:23:09Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。