論文の概要: Private, Efficient and Scalable Kernel Learning for Medical Image Analysis
- arxiv url: http://arxiv.org/abs/2410.15840v1
- Date: Mon, 21 Oct 2024 10:03:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:13.398296
- Title: Private, Efficient and Scalable Kernel Learning for Medical Image Analysis
- Title(参考訳): 医用画像解析のためのプライベート,効率的,スケーラブルカーネル学習
- Authors: Anika Hannemann, Arjhun Swaminathan, Ali Burak Ünal, Mete Akgün,
- Abstract要約: OKRA(Orthonormal K-fRAmes)は、カーネルベースの機械学習のための新しいランダム化符号化ベースのアプローチである。
現在の最先端ソリューションと比較して、スケーラビリティとスピードが大幅に向上します。
- 参考スコア(独自算出の注目度): 1.7999333451993955
- License:
- Abstract: Medical imaging is key in modern medicine. From magnetic resonance imaging (MRI) to microscopic imaging for blood cell detection, diagnostic medical imaging reveals vital insights into patient health. To predict diseases or provide individualized therapies, machine learning techniques like kernel methods have been widely used. Nevertheless, there are multiple challenges for implementing kernel methods. Medical image data often originates from various hospitals and cannot be combined due to privacy concerns, and the high dimensionality of image data presents another significant obstacle. While randomised encoding offers a promising direction, existing methods often struggle with a trade-off between accuracy and efficiency. Addressing the need for efficient privacy-preserving methods on distributed image data, we introduce OKRA (Orthonormal K-fRAmes), a novel randomized encoding-based approach for kernel-based machine learning. This technique, tailored for widely used kernel functions, significantly enhances scalability and speed compared to current state-of-the-art solutions. Through experiments conducted on various clinical image datasets, we evaluated model quality, computational performance, and resource overhead. Additionally, our method outperforms comparable approaches
- Abstract(参考訳): 医用画像は現代医学の鍵となる。
磁気共鳴イメージング(MRI)から、血液細胞検出のための顕微鏡イメージングまで、診断医療画像は患者の健康に重要な洞察を与える。
病気を予測したり、個別の治療法を提供するために、カーネルメソッドのような機械学習技術が広く使われている。
それでも、カーネルメソッドの実装には複数の課題がある。
医療画像データはしばしば様々な病院から発生し、プライバシー上の懸念から組み合わせることができず、画像データの高次元性もまた大きな障害となる。
ランダム化符号化は有望な方向を提供するが、既存の手法は精度と効率のトレードオフに悩まされることが多い。
分散画像データに対する効率的なプライバシ保存手法の必要性に対処するため,カーネルベース機械学習のための新しいランダム化符号化方式であるOKRA(Orthonormal K-fRAmes)を導入する。
この技術は広く使われているカーネル機能に特化しており、現在の最先端のソリューションと比較してスケーラビリティと速度を大幅に向上させる。
各種臨床画像データセットを用いて実験を行い, モデル品質, 計算性能, 資源オーバーヘッドを評価した。
さらに、我々のメソッドは同等のアプローチよりも優れています。
関連論文リスト
- Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
分散トレーニングは、大規模な医用画像データセットの処理を容易にし、疾患診断の精度と効率を向上させる。
本稿では,データプライバシと効率的な疾患診断という2つの課題に対処するために,Federated Learning(FL)を活用した医用画像分類の革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-15T09:07:19Z) - Rapid hyperspectral photothermal mid-infrared spectroscopic imaging from
sparse data for gynecologic cancer tissue subtyping [3.550171634694342]
ミドル赤外線(Mid-Infrared、MIR)は、ラベルなし、生化学的に定量的な技術である。
この研究は、MIR光熱画像への新しいアプローチを示し、その速度を桁違いに向上させる。
論文 参考訳(メタデータ) (2024-02-28T00:57:35Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - A Segmentation Method for fluorescence images without a machine learning
approach [0.0]
本研究では,細胞と核を同定するための決定論的計算神経科学アプローチについて述べる。
この方法は、正式に正しい関数に基づいて堅牢であり、特定のデータセットのチューニングに支障を来さない。
論文 参考訳(メタデータ) (2022-12-28T16:47:05Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
ヒト脳の132領域への高速かつ正確なセグメンテーションのための新しい深層学習法を提案する。
提案モデルは、効率的なU-Netライクなネットワークと、異なるビューと階層関係の交差点の利点を利用する。
提案手法は,画像の事前処理や性能低下を伴わずに頭蓋骨や他の人工物を含む脳MRIデータに適用することができる。
論文 参考訳(メタデータ) (2022-08-30T16:06:07Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Unsupervised Anomaly Detection in MR Images using Multi-Contrast
Information [3.7273619690170796]
医用画像における異常検出は、疾患の関連バイオマーカーを正常な組織と区別することである。
深い教師付き学習手法は様々な検出課題に有意な可能性があるが、その性能は医療画像分野では限られている。
本稿では,マルチコントラストMRIにおける画素ワイド異常検出のための教師なし学習フレームワークを開発した。
論文 参考訳(メタデータ) (2021-05-02T13:05:36Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
病院では、同じ情報を異なるモダリティの下で利用できるようにする特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
テスト時にモダリティの低下に耐性を持つマルチモーダル入力の優れた表現を学習することで、利用可能なデータを最大限活用する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T20:05:35Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。