Unifying Heterogenous Electronic Health Records Systems via Text-Based
Code Embedding
- URL: http://arxiv.org/abs/2108.03625v1
- Date: Sun, 8 Aug 2021 12:47:42 GMT
- Title: Unifying Heterogenous Electronic Health Records Systems via Text-Based
Code Embedding
- Authors: Kyunghoon Hur, Jiyoung Lee, Jungwoo Oh, Wesley Price, Young-Hak Kim,
Edward Choi
- Abstract summary: We introduce DescEmb, a code-agnostic description-based representation learning framework for predictive modeling on EHR.
We tested our model's capacity on various experiments including prediction tasks, transfer learning and pooled learning.
- Score: 7.3394352452936085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Substantial increase in the use of Electronic Health Records (EHRs) has
opened new frontiers for predictive healthcare. However, while EHR systems are
nearly ubiquitous, they lack a unified code system for representing medical
concepts. Heterogeneous formats of EHR present a substantial barrier for the
training and deployment of state-of-the-art deep learning models at scale. To
overcome this problem, we introduce Description-based Embedding, DescEmb, a
code-agnostic description-based representation learning framework for
predictive modeling on EHR. DescEmb takes advantage of the flexibility of
neural language understanding models while maintaining a neutral approach that
can be combined with prior frameworks for task-specific representation learning
or predictive modeling. We tested our model's capacity on various experiments
including prediction tasks, transfer learning and pooled learning. DescEmb
shows higher performance in overall experiments compared to code-based
approach, opening the door to a text-based approach in predictive healthcare
research that is not constrained by EHR structure nor special domain knowledge.
Related papers
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Scaling Representation Learning from Ubiquitous ECG with State-Space
Models [28.776392386988043]
We introduce textbfWildECG, a pre-trained state-space model for representation learning from ECG signals.
We train this model in a self-supervised manner with 275,000 10s ECG recordings collected in the wild and evaluate it on a range of downstream tasks.
arXiv Detail & Related papers (2023-09-26T22:08:19Z) - An interpretable deep learning method for bearing fault diagnosis [12.069344716912843]
We utilize a convolutional neural network (CNN) with Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations to form an interpretable Deep Learning (DL) method for classifying bearing faults.
During the model evaluation process, the proposed approach retrieves prediction basis samples from the health library according to the similarity of the feature importance.
arXiv Detail & Related papers (2023-08-20T15:22:08Z) - Can Current Explainability Help Provide References in Clinical Notes to
Support Humans Annotate Medical Codes? [53.45585591262433]
We present an explainable Read, Attend, and Code (xRAC) framework and assess two approaches, attention score-based xRAC-ATTN and model-agnostic knowledge-distillation-based xRAC-KD.
We find that the supporting evidence text highlighted by xRAC-ATTN is of higher quality than xRAC-KD whereas xRAC-KD has potential advantages in production deployment scenarios.
arXiv Detail & Related papers (2022-10-28T04:06:07Z) - Unifying Heterogenous Electronic Health Records Systems via Text-Based
Code Embedding [7.3394352452936085]
We introduceDescription-based Embedding,DescEmb, a code-agnostic representation learning framework for EHR.
DescEmb takes advantage of the flexibil-ity of neural language understanding models toembed clinical events using their textual descrip-tions rather than directly mapping each event to a dedicated embedding.
arXiv Detail & Related papers (2021-11-12T20:27:55Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Concept-based model explanations for Electronic Health Records [1.6837409766909865]
Testing with Concept Activation Vectors (TCAV) has recently been introduced as a way of providing human-understandable explanations.
We propose an extension of the method to time series data to enable an application of TCAV to sequential predictions in the EHR.
arXiv Detail & Related papers (2020-12-03T22:18:24Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.