QForte: an efficient state simulator and quantum algorithms library for
molecular electronic structure
- URL: http://arxiv.org/abs/2108.04413v1
- Date: Tue, 10 Aug 2021 02:51:42 GMT
- Title: QForte: an efficient state simulator and quantum algorithms library for
molecular electronic structure
- Authors: Nicholas H. Stair and Francesco A. Evangelista
- Abstract summary: We introduce a novel open-source software package QForte, a comprehensive development tool for new quantum simulation algorithms.
QForte incorporates functionality for handling molecular Hamiltonians, fermionic encoding, ansatz construction, time evolution, and state-vector simulation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel open-source software package QForte, a comprehensive
development tool for new quantum simulation algorithms. QForte incorporates
functionality for handling molecular Hamiltonians, fermionic encoding, ansatz
construction, time evolution, and state-vector simulation, requiring only a
classical electronic structure package as a dependency. QForte also contains
black-box implementations of a wide variety of quantum algorithms including
(but not limited to): variational and projective quantum eigensolvers, adaptive
eigensolvers, quantum imaginary time evolution, quantum Krylov methods, and
quantum phase estimation. We highlight two features of QForte: i) how the
Python class structure of QForte enables the facile implementation of new
algorithms, and ii) how existing algorithms can be executed in just a few lines
of code.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Adaptive variational simulation for open quantum systems [0.25602836891933073]
We present an adaptive variational quantum algorithm for simulating open quantum system dynamics.
Our results demonstrate that near-future quantum processors are capable of simulating open quantum systems.
arXiv Detail & Related papers (2023-05-11T16:00:13Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - tqix.pis: A toolbox for large-scale quantum simulation platforms [0.0]
tqix.pis is a library of tqix for executing various algorithms in large-scale quantum simulation platforms.
It emulates basic functions of a quantum circuit, including qubits, quantum gates, and measurements.
arXiv Detail & Related papers (2022-09-02T16:57:22Z) - Open Source Variational Quantum Eigensolver Extension of the Quantum
Learning Machine (QLM) for Quantum Chemistry [0.0]
We introduce a novel open-source QC package, denoted Open-VQE, providing tools for using and developing chemically-inspired adaptive methods.
It is able to use the Atos Quantum Learning Machine (QLM), a general programming framework enabling to write, optimize simulate computing programs.
Along with OpenVQE, we introduce myQLMFermion, a new open-source module (that includes the key QLM ressources that are important for QC developments)
arXiv Detail & Related papers (2022-06-17T14:24:22Z) - Simulating molecules using the VQE algorithm on Qiskit [0.0]
We provide the implementation of the Variational Quantum Eigensolver algorithm for finding the ground state energy of a hydrogen molecule on Qiskit library for python.
arXiv Detail & Related papers (2022-01-08T15:05:32Z) - QuaSiMo: A Composable Library to Program Hybrid Workflows for Quantum
Simulation [48.341084094844746]
We present a composable design scheme for the development of hybrid quantum/classical algorithms and for applications of quantum simulation.
We implement our design scheme using the hardware-agnostic programming language QCOR into the QuaSiMo library.
arXiv Detail & Related papers (2021-05-17T16:17:57Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - VQE Method: A Short Survey and Recent Developments [5.9640499950316945]
The variational quantum eigensolver (VQE) is a method that uses a hybrid quantum-classical computational approach to find eigenvalues and eigenvalues of a Hamiltonian.
VQE has been successfully applied to solve the electronic Schr"odinger equation for a variety of small molecules.
Modern quantum computers are not capable of executing deep quantum circuits produced by using currently available ansatze.
arXiv Detail & Related papers (2021-03-15T16:25:36Z) - Composable Programming of Hybrid Workflows for Quantum Simulation [48.341084094844746]
We present a composable design scheme for the development of hybrid quantum/classical algorithms and for applications of quantum simulation.
We implement our design scheme using the hardware-agnostic programming language QCOR into the QuaSiMo library.
arXiv Detail & Related papers (2021-01-20T14:20:14Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.