論文の概要: Hierarchical Infinite Relational Model
- arxiv url: http://arxiv.org/abs/2108.07208v1
- Date: Mon, 16 Aug 2021 16:32:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-17 15:31:05.436072
- Title: Hierarchical Infinite Relational Model
- Title(参考訳): 階層型無限関係モデル
- Authors: Feras A. Saad, Vikash K. Mansinghka
- Abstract要約: 階層的無限リレーショナルモデル(HIRM)は、ノイズ、スパース、不均一リレーショナルデータのための新しい確率的生成モデルである。
ギブスサンプリングによるベイズ後部推論のための新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 3.731168012111833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes the hierarchical infinite relational model (HIRM), a new
probabilistic generative model for noisy, sparse, and heterogeneous relational
data. Given a set of relations defined over a collection of domains, the model
first infers multiple non-overlapping clusters of relations using a top-level
Chinese restaurant process. Within each cluster of relations, a Dirichlet
process mixture is then used to partition the domain entities and model the
probability distribution of relation values. The HIRM generalizes the standard
infinite relational model and can be used for a variety of data analysis tasks
including dependence detection, clustering, and density estimation. We present
new algorithms for fully Bayesian posterior inference via Gibbs sampling. We
illustrate the efficacy of the method on a density estimation benchmark of
twenty object-attribute datasets with up to 18 million cells and use it to
discover relational structure in real-world datasets from politics and
genomics.
- Abstract(参考訳): 本稿では、雑音、スパース、不均一な関係データに対する新しい確率的生成モデルである階層的無限リレーショナルモデル(HIRM)について述べる。
ドメインの集合上で定義された関係の集合を考えると、このモデルはまず、上位レベルの中華料理店のプロセスを用いて複数の重複しない関係のクラスターを推論する。
各関係のクラスタ内で、dirichletプロセス混合物を使用してドメインエンティティを分割し、関係値の確率分布をモデル化する。
HIRMは標準無限リレーショナルモデルを一般化し、依存検出、クラスタリング、密度推定を含む様々なデータ解析タスクに使用できる。
ギブスサンプリングによるベイズ後部推論のための新しいアルゴリズムを提案する。
提案手法は,最大1800万セルからなる20個のオブジェクト属性データセットの密度推定ベンチマークにおいて有効であり,それを用いて政治・ゲノム学から実世界のデータセットの相関構造を発見する。
関連論文リスト
- Empirical Density Estimation based on Spline Quasi-Interpolation with
applications to Copulas clustering modeling [0.0]
密度推定は、様々な分野において、基礎となるデータの分布をモデル化し理解するための基礎的な手法である。
本稿では,擬似補間による密度の単変量近似を提案する。
提案アルゴリズムは人工データセットと実データセットで検証される。
論文 参考訳(メタデータ) (2024-02-18T11:49:38Z) - Optimal Heterogeneous Collaborative Linear Regression and Contextual
Bandits [34.121889149071684]
本研究では、各インスタンスの関連パラメータが大域的パラメータとスパースなインスタンス固有項と等しくなるような協調線形回帰と文脈的バンドイットについて検討する。
MOLARと呼ばれる新しい2段階推定器を提案し、まず、インスタンスの線形回帰推定のエントリーワイド中央値を構築し、その後、インスタンス固有推定値を中央値に向けて縮小することで、この構造を利用する。
次に、MOLARを用いて、不均一な協調的文脈的包帯の手法を開発し、独立した包帯法と比較して、後悔の保証を改善する。
論文 参考訳(メタデータ) (2023-06-09T22:48:13Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - Scalable Bayesian Network Structure Learning with Splines [2.741266294612776]
ベイズネットワーク(英: Bayesian Network, BN)は、有向非巡回グラフ(DAG)からなる確率的グラフィカルモデルである。
本稿では,BNのグローバルDAG構造を学習し,変数間の線形および非線形な局所関係をモデル化する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-27T17:54:53Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Clustering-based Unsupervised Generative Relation Extraction [3.342376225738321]
クラスタリングに基づく教師なし生成関係抽出フレームワーク(CURE)を提案する。
我々は「エンコーダ・デコーダ」アーキテクチャを用いて自己教師付き学習を行い、エンコーダが関係情報を抽出できるようにする。
我々のモデルは、ニューヨーク・タイムズ(NYT)と国連並列コーパス(UNPC)の標準データセットにおいて、最先端モデルよりも優れている。
論文 参考訳(メタデータ) (2020-09-26T20:36:40Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
多視点問題は潜在変数モデルに直面することができる。
高次元問題と非線形問題は伝統的にカーネルメソッドによって扱われる。
両アプローチを単一モデルにマージすることを提案する。
論文 参考訳(メタデータ) (2020-06-01T14:25:38Z) - Automated extraction of mutual independence patterns using Bayesian
comparison of partition models [7.6146285961466]
相互独立は、変数間の構造的関係を特徴づける統計学における重要な概念である。
相互独立を調査するための既存の手法は、2つの競合するモデルの定義に依存している。
本稿では,マルコフ連鎖モンテカルロ(MCMC)アルゴリズムを提案し,相互独立性のすべてのパターンの空間上の後部分布を数値的に近似する。
論文 参考訳(メタデータ) (2020-01-15T16:21:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。