論文の概要: Fourier Neural Operator Networks: A Fast and General Solver for the
Photoacoustic Wave Equation
- arxiv url: http://arxiv.org/abs/2108.09374v1
- Date: Fri, 20 Aug 2021 21:09:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-25 12:02:59.129856
- Title: Fourier Neural Operator Networks: A Fast and General Solver for the
Photoacoustic Wave Equation
- Title(参考訳): フーリエニューラル演算子ネットワーク:光音響波動方程式の高速で一般的な解法
- Authors: Steven Guan, Ko-Tsung Hsu, and Parag V. Chitnis
- Abstract要約: 同質媒質における2次元光音響波動方程式の解法として,高速なデータ駆動深層学習法を適用した。
我々はFNOネットワークが小さな誤差で同等のシミュレーションを発生し、桁違いに高速であったことを示す。
- 参考スコア(独自算出の注目度): 1.7205106391379026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation tools for photoacoustic wave propagation have played a key role in
advancing photoacoustic imaging by providing quantitative and qualitative
insights into parameters affecting image quality. Classical methods for
numerically solving the photoacoustic wave equation relies on a fine
discretization of space and can become computationally expensive for large
computational grids. In this work, we apply Fourier Neural Operator (FNO)
networks as a fast data-driven deep learning method for solving the 2D
photoacoustic wave equation in a homogeneous medium. Comparisons between the
FNO network and pseudo-spectral time domain approach demonstrated that the FNO
network generated comparable simulations with small errors and was several
orders of magnitude faster. Moreover, the FNO network was generalizable and can
generate simulations not observed in the training data.
- Abstract(参考訳): 光音響伝搬のためのシミュレーションツールは、画質に影響するパラメータに対する定量的・質的洞察を提供することで、光音響イメージングの進歩において重要な役割を果たす。
光音響波動方程式を数値的に解く古典的手法は、空間の微細な離散化に依存し、大きな計算格子に対して計算コストがかかる。
本研究では,FNO(Fourier Neural Operator)ネットワークを高速なデータ駆動深層学習法として応用し,同質媒質中の2次元光音響波動方程式を解く。
FNOネットワークと疑似スペクトル時間領域の比較により、FNOネットワークは小さな誤差で比較可能なシミュレーションを生成し、桁違いに高速であった。
さらに、FNOネットワークは一般化可能であり、トレーニングデータでは観測できないシミュレーションを生成することができる。
関連論文リスト
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
深部画像登録は異常な精度と高速な推測を示した。
近年の進歩は、粗大から粗大の方法で密度変形場を推定するために、複数のカスケードまたはピラミッドアーキテクチャを採用している。
本稿では,様々なスケールにわたる変位/速度場に対して,スケールワイブレット係数を漸進的に推定するモデル駆動WiNetを提案する。
論文 参考訳(メタデータ) (2024-07-18T11:51:01Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
Incrmental Fourier Neural Operator (iFNO)を導入し、モデルが使用する周波数モードの数を徐々に増加させる。
iFNOは、各種データセット間の一般化性能を維持したり改善したりしながら、トレーニング時間を短縮する。
提案手法は,既存のフーリエニューラル演算子に比べて20%少ない周波数モードを用いて,10%低いテスト誤差を示すとともに,30%高速なトレーニングを実現する。
論文 参考訳(メタデータ) (2022-11-28T09:57:15Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - Solving Seismic Wave Equations on Variable Velocity Models with Fourier
Neural Operator [3.2307366446033945]
本稿では,FNOに基づく解法を効率的に学習するための新しいフレームワークであるFourier Neural operator (PFNO)を提案する。
数値実験により、複雑な速度モデルによるFNOとPFNOの精度が示された。
PFNOは、従来の有限差分法と比較して、大規模なテストデータセットの計算効率が高いことを認めている。
論文 参考訳(メタデータ) (2022-09-25T22:25:57Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
最近提案された物理インフォームドニューラルネットワーク(PINN)は、幅広い偏微分方程式(PDE)を解くことに成功している。
本稿では、波動方程式の代わりにPINNを用いて周波数領域における音響および粘性音響散乱波動方程式を解き、震源の摂動を除去する。
PMLと2次ニューロンは、その効果と減衰を改善できることを示し、この改善の理由を議論する。
論文 参考訳(メタデータ) (2022-08-16T13:29:01Z) - Single Plane-Wave Imaging using Physics-Based Deep Learning [2.1410799064827226]
平面波イメージングでは、異なる角度から複数の非焦点超音波が媒介される。
超音波イメージングを改善するための深層学習法が提案されている。
本稿では、深部畳み込みニューラルネットワークにおける波動物理に基づく画像形成アルゴリズムを組み込んだデータ・ツー・イメージアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-09-08T14:06:29Z) - Seismic wave propagation and inversion with Neural Operators [7.296366040398878]
我々は、最近開発されたNeural Operatorと呼ばれる機械学習パラダイムを用いて、一般的なソリューションを学習するためのプロトタイプフレームワークを開発した。
訓練されたニューラル演算子は、任意の速度構造やソース位置について、無視可能な時間で解を計算することができる。
本手法を2次元音響波動方程式を用いて説明し, 地震トモグラフィへの適用性を実証する。
論文 参考訳(メタデータ) (2021-08-11T19:17:39Z) - Prediction of Ultrasonic Guided Wave Propagation in Solid-fluid and
their Interface under Uncertainty using Machine Learning [0.0]
我々は,構造物の材料および幾何学的特性の不確かさを考慮し,既存研究を推し進める。
本研究では,不確実性の下での多物理問題の解法に固有の複雑性に対処する効率的なアルゴリズムを開発する。
提案手法は不確実性が存在する場合にWpFSI問題を正確に予測する。
論文 参考訳(メタデータ) (2021-03-30T01:05:14Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
本稿では,ISTAアルゴリズムの展開に基づく時空間領域におけるサブNyquistサンプルからの再構成手法を提案する。
本手法は,高品質な撮像性能を確保しつつ,配列要素数,サンプリングレート,計算時間を削減できる。
論文 参考訳(メタデータ) (2021-03-01T19:19:38Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
フーリエ周波数領域における符号関数の勾配を正弦関数の組み合わせを用いて推定し,BNNの訓練を行う。
いくつかのベンチマークデータセットとニューラルネットワークの実験により、この手法で学習したバイナリネットワークが最先端の精度を達成することが示されている。
論文 参考訳(メタデータ) (2021-03-01T08:25:26Z) - Progressive Training of Multi-level Wavelet Residual Networks for Image
Denoising [80.10533234415237]
本稿では,マルチレベルウェーブレット残差ネットワーク(MWRN)アーキテクチャと,画像復調性能向上のためのプログレッシブトレーニング手法を提案する。
人工ノイズ画像と実世界のノイズ画像の両方で実験したところ、PT-MWRNは最先端のノイズ評価法に対して良好に機能することがわかった。
論文 参考訳(メタデータ) (2020-10-23T14:14:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。