論文の概要: Seismic wave propagation and inversion with Neural Operators
- arxiv url: http://arxiv.org/abs/2108.05421v1
- Date: Wed, 11 Aug 2021 19:17:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-13 14:23:50.014595
- Title: Seismic wave propagation and inversion with Neural Operators
- Title(参考訳): ニューラルネットワークによる地震波伝搬とインバージョン
- Authors: Yan Yang, Angela F. Gao, Jorge C. Castellanos, Zachary E. Ross, Kamyar
Azizzadenesheli, Robert W. Clayton
- Abstract要約: 我々は、最近開発されたNeural Operatorと呼ばれる機械学習パラダイムを用いて、一般的なソリューションを学習するためのプロトタイプフレームワークを開発した。
訓練されたニューラル演算子は、任意の速度構造やソース位置について、無視可能な時間で解を計算することができる。
本手法を2次元音響波動方程式を用いて説明し, 地震トモグラフィへの適用性を実証する。
- 参考スコア(独自算出の注目度): 7.296366040398878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Seismic wave propagation forms the basis for most aspects of seismological
research, yet solving the wave equation is a major computational burden that
inhibits the progress of research. This is exaspirated by the fact that new
simulations must be performed when the velocity structure or source location is
perturbed. Here, we explore a prototype framework for learning general
solutions using a recently developed machine learning paradigm called Neural
Operator. A trained Neural Operator can compute a solution in negligible time
for any velocity structure or source location. We develop a scheme to train
Neural Operators on an ensemble of simulations performed with random velocity
models and source locations. As Neural Operators are grid-free, it is possible
to evaluate solutions on higher resolution velocity models than trained on,
providing additional computational efficiency. We illustrate the method with
the 2D acoustic wave equation and demonstrate the method's applicability to
seismic tomography, using reverse mode automatic differentiation to compute
gradients of the wavefield with respect to the velocity structure. The
developed procedure is nearly an order of magnitude faster than using
conventional numerical methods for full waveform inversion.
- Abstract(参考訳): 地震波伝播は地震学研究のほとんどの側面の基礎となっているが、波動方程式を解くことは研究の進展を妨げる大きな計算負荷である。
これは、速度構造や震源位置が摂動した時に新しいシミュレーションを行う必要があるという事実から推測される。
本稿では、最近開発されたNeural Operatorと呼ばれる機械学習パラダイムを用いて、一般的なソリューションを学習するためのプロトタイプフレームワークを検討する。
訓練されたニューラルネットワークオペレータは、任意の速度構造やソースロケーションの解を無視できる時間で計算することができる。
本研究では,ランダム速度モデルと音源位置を用いたシミュレーションのアンサンブル上で,ニューラルネットワークを訓練する手法を開発した。
ニューラル演算子はグリッドフリーであるため、トレーニング対象よりも高い解像度の速度モデルの解を評価することができ、計算効率が向上する。
本研究では, 2次元音響波動方程式を用いて, 逆モード自動微分法を用いて, 波動場の速度構造に対する勾配を計算し, 地震トモグラフィへの適用性を示す。
本手法は, 従来の全波形逆解析法よりも約1桁高速である。
関連論文リスト
- Physics-guided Full Waveform Inversion using Encoder-Solver Convolutional Neural Networks [7.56372030029358]
フルウェーブフォーム・インバージョン(Full Waveform Inversion, FWI)は、与えられた領域における波動速度分布を推定する逆問題である。
我々は畳み込みニューラルネットワークに基づくエンコーダ-ソルバ事前条件の学習プロセスを開発する。
高周波データを用いた2次元物理モデルを用いてFWI問題の解法を実証する。
論文 参考訳(メタデータ) (2024-05-27T23:03:21Z) - Waveformer for modelling dynamical systems [1.0878040851638]
動的システムの学習ソリューションを学習するための新しい演算子学習手法である「ウェーブフォーマ」を提案する。
提案した波形変換器はウェーブレット変換を利用して解場と変圧器の空間的マルチスケールな挙動を捉える。
本稿では,提案するWaveformerが解演算子を高精度に学習し,既存の最先端演算子学習アルゴリズムを最大1桁の精度で上回っていることを示す。
論文 参考訳(メタデータ) (2023-10-08T03:34:59Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
ニューラルネットワークを用いた位相分解波面再構成のための新しい手法を提案する。
提案手法は,一次元格子を用いた合成的かつ高精度な訓練データを利用する。
論文 参考訳(メタデータ) (2023-05-18T12:30:26Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
実験によって測定された速度場の時間的変化を予測するために,最先端の演算子学習手法を適用した。
その結果、FNOはレイノルズ数の範囲で実験速度場の進化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-01-19T20:04:36Z) - Solving Seismic Wave Equations on Variable Velocity Models with Fourier
Neural Operator [3.2307366446033945]
本稿では,FNOに基づく解法を効率的に学習するための新しいフレームワークであるFourier Neural operator (PFNO)を提案する。
数値実験により、複雑な速度モデルによるFNOとPFNOの精度が示された。
PFNOは、従来の有限差分法と比較して、大規模なテストデータセットの計算効率が高いことを認めている。
論文 参考訳(メタデータ) (2022-09-25T22:25:57Z) - Wavelet neural operator: a neural operator for parametric partial
differential equations [0.0]
WNO(Wavelet Neural Operator)と呼ばれる新しい演算子学習アルゴリズムを提案する。
WNOは、関数の時間周波数局所化におけるウェーブレットの優位性を活用し、空間領域におけるパターンの正確な追跡を可能にする。
提案手法は、利用可能な歴史的データに基づいて地球の気温を予測するデジタルツインを構築するために用いられる。
論文 参考訳(メタデータ) (2022-05-04T17:13:59Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
我々は、ダイソン展開に基づく半解析手法を導入し、標準数値法よりもはるかに高速に駆動量子系を時間発展させることができる。
回路QEDアーキテクチャにおけるトランスモン量子ビットを用いた2量子ゲートの最適化結果を示す。
論文 参考訳(メタデータ) (2020-12-16T21:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。