論文の概要: Quantum Alternating Operator Ansatz (QAOA) Phase Diagrams and
Applications for Quantum Chemistry
- arxiv url: http://arxiv.org/abs/2108.13056v2
- Date: Tue, 26 Oct 2021 19:38:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 19:20:54.228467
- Title: Quantum Alternating Operator Ansatz (QAOA) Phase Diagrams and
Applications for Quantum Chemistry
- Title(参考訳): 量子交互演算子アンザッツ(QAOA)相図と量子化学への応用
- Authors: Vladimir Kremenetski, Tad Hogg, Stuart Hadfield, Stephen J. Cotton,
Norm M. Tubman
- Abstract要約: 我々は、分子の基底状態の発見に適用するためにQAOAを修正し、いくつかの分子上で修正アルゴリズムを経験的に評価する。
パラメータのステップとサイズの関数としてQAOAの頑健な定性的挙動が発見され,この挙動が標準的なQAOA探索にも現れることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Determining Hamiltonian ground states and energies is a challenging task with
many possible approaches on quantum computers. While variational quantum
eigensolvers are popular approaches for near term hardware, adiabatic state
preparation is an alternative that does not require noisy optimization of
parameters. Beyond adiabatic schedules, QAOA is an important method for
optimization problems. In this work we modify QAOA to apply to finding ground
states of molecules and empirically evaluate the modified algorithm on several
molecules. This modification applies physical insights used in classical
approximations to construct suitable QAOA operators and initial state. We find
robust qualitative behavior for QAOA as a function of the number of steps and
size of the parameters, and demonstrate this behavior also occurs in standard
QAOA applied to combinatorial search. To this end we introduce QAOA phase
diagrams that capture its performance and properties in various limits. In
particular we show a region in which non-adiabatic schedules perform better
than the adiabatic limit while employing lower quantum circuit depth. We
further provide evidence our results and insights also apply to QAOA
applications beyond chemistry.
- Abstract(参考訳): ハミルトン基底状態とエネルギーを決定することは、量子コンピュータ上で多くの可能なアプローチを持つ困難な課題である。
変分量子固有ソルバは、短期ハードウェアの一般的なアプローチであるが、断熱的状態準備は、パラメータのノイズの最適化を必要としない代替手段である。
断熱的なスケジュール以外にも、QAOAは最適化問題の重要な方法である。
本研究では、分子の基底状態の発見に適用するためにQAOAを修正し、複数の分子上の修正アルゴリズムを実験的に評価する。
この修正は、古典近似で使われる物理的洞察を適用して、適切なQAOA演算子と初期状態を構築する。
パラメータのステップ数とサイズを関数としてQAOAの頑健な定性的挙動が発見され,この挙動が組合せ探索に適用された標準QAOAにも現れることを示す。
この目的のためにQAOA位相図を導入し、その性能と特性を様々な限界で捉えた。
特に、低い量子回路深度を用いながら、非断熱的スケジュールが断熱的限界より優れている領域を示す。
さらに、我々の結果と洞察が化学以外のqaoaアプリケーションにも当てはまる証拠を提供します。
関連論文リスト
- Connecting the Hamiltonian structure to the QAOA performance and energy landscape [0.0]
量子交互演算子 Ansatz (QAOA) は2次非制約二項最適化問題の解法に有効である。
本研究は,短期量子デバイスにおけるアルゴリズムの堅牢性と最適化タスクの可能性を強調する。
論文 参考訳(メタデータ) (2024-07-05T11:32:46Z) - Quantum Alternating Operator Ansatz (QAOA) beyond low depth with
gradually changing unitaries [0.0]
本稿では,量子交互演算子アンザッツ回路の動作を制御する機構について検討する。
離散的断熱定理を用いて、連続時間断熱定理から得られる洞察を補完し一般化する。
分析では,最近導入されたQAOAパフォーマンス図で顕著に示されているいくつかの一般的な特性について説明する。
論文 参考訳(メタデータ) (2023-05-08T04:21:42Z) - Alignment between Initial State and Mixer Improves QAOA Performance for
Constrained Optimization [11.445200448951072]
量子交互演算子 ansatz (QAOA) は断熱アルゴリズムと強い関係を持つ。
本稿では, 断熱アルゴリズムの直感がQAOA初期状態を選択するタスクに適用できることを実証する。
論文 参考訳(メタデータ) (2023-05-05T21:54:28Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
変分量子アルゴリズム(VQA)は、ノイズプロセッサを介して量子アドバンテージを得るための最も有望な経路を提供する。
不完全性とデコヒーレンスによるゲートノイズは、バイアスを導入して勾配推定に影響を与える。
QEM(Quantum error mitigation)技術は、キュービット数の増加を必要とせずに、推定バイアスを低減することができる。
QEMは必要な反復回数を減らすことができるが、量子ノイズレベルが十分に小さい限りである。
論文 参考訳(メタデータ) (2022-09-23T10:48:04Z) - How Much Entanglement Do Quantum Optimization Algorithms Require? [0.0]
ADAPT-QAOA施行時に発生する絡みについて検討した。
この柔軟性を漸進的に制限することにより、初期におけるより多くの絡み合いエントロピーが、後段におけるより速い収束と一致していることが分かる。
論文 参考訳(メタデータ) (2022-05-24T18:00:02Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z) - Bridging Classical and Quantum with SDP initialized warm-starts for QAOA [4.76507354067301]
本稿では,QAOAをグラフ内のすべての可能なカットの偏重重ね合わせで初期化する,古典的な前処理ステップを紹介する。
我々は、QAOA-Warmと呼ばれるこのQAOAの変種が、トレーニング時間が少なく、低い回路深度で標準QAOAより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-27T02:57:22Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
変分量子アルゴリズム (VQA) の中心成分は状態準備回路(英語版)であり、アンザッツ(英語版)または変分形式(英語版)とも呼ばれる。
ここでは、対称性を破るユニタリを組み込んだ「解」を導入することで、このアプローチが必ずしも有利であるとは限らないことを示す。
この研究は、より一般的な対称性を破るアンスの開発に向けた第一歩となり、物理学や化学問題への応用に繋がる。
論文 参考訳(メタデータ) (2020-08-03T18:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。