Digital quantum simulation and Pseudoquantum Simulation of
$\mathbb{Z}_2$ Gauge Higgs Model
- URL: http://arxiv.org/abs/2108.13410v2
- Date: Sun, 13 Mar 2022 05:45:56 GMT
- Title: Digital quantum simulation and Pseudoquantum Simulation of
$\mathbb{Z}_2$ Gauge Higgs Model
- Authors: Yiming Ding, Xiaopeng Cui, Yu Shi
- Abstract summary: We present a quantum algorithm for digital quantum simulation of the $mathbbZ$ gauge-Higgs model on a $3times 3$ lattice.
We perform a classical demonstration, dubbed a pseudoquantum simulation, on a GPU simulator.
It is suggested that the tricitical point, where the second-order critical lines of deconfinement-confinement transition and of deconfinement-Higgs transition meet, seems to be on the the first-order critical line of confinement-Higgs transition.
- Score: 9.290265520840595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a quantum algorithm for digital quantum simulation of the
$\mathbb{Z}_2$ gauge-Higgs model on a $3\times 3$ lattice, which is based on
Trotter decomposition, the quantum adiabatic algorithm and its circuit
realization. Then we perform a classical demonstration, dubbed a pseudoquantum
simulation, on a GPU simulator. We obtain useful results on this model, which
suggest the topological properties of the deconfined phase and help to clarify
the phase diagram. It is suggested that the tricitical point, where the
second-order critical lines of deconfinement-confinement transition and of
deconfinement-Higgs transition meet, seems to be on the the first-order
critical line of confinement-Higgs transition, at a point other than the end of
this critical line.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Simulating a Chern Insulator with C = $\pm$2 on Synthetic Floquet Lattice [3.1811233093832847]
Floquet lattice provides a powerful platform for the quantum simulation of topological phenomena.
Our work demonstrates significant potential for simulating complex topological matter using quantum computing platforms.
arXiv Detail & Related papers (2024-05-20T02:33:21Z) - Digital quantum simulation of lattice fermion theories with local encoding [0.0]
We numerically analyze the feasibility of a platform-neutral, general strategy to perform quantum simulations of fermionic lattice field theories.
We observe a timescale separation for spin- and charge-excitations in a spin-$frac12$ Hubbard ladder in the $t-J$ model limit.
arXiv Detail & Related papers (2023-10-23T16:54:49Z) - Simulating $\mathbb{Z}_2$ Lattice Gauge Theory with the Variational
Quantum Thermalizer [0.6165163123577484]
We apply a variational quantum algorithm to a low-dimensional model which has a local abelian gauge symmetry.
We demonstrate how this approach can be applied to obtain information regarding the phase diagram as well as unequal-time correlation functions at non-zero temperature.
arXiv Detail & Related papers (2023-06-09T17:32:37Z) - Towards a Quantum Simulation of Nonlinear Sigma Models with a
Topological Term [0.0]
We show that the quantum theory is massless in the strong-coupling regime.
We also highlight the limitations of current quantum algorithms, designed for noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2022-10-07T16:35:03Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Tuning the Topological $\theta$-Angle in Cold-Atom Quantum Simulators of
Gauge Theories [3.4075669047370125]
We show how a tunable topological $theta$-term can be added to a prototype theory with gauge symmetry.
The model can be realized experimentally in a single-species Bose--Hubbard model in an optical superlattice with three different spatial periods.
This work opens the door towards studying the rich physics of topological gauge-theory terms in large-scale cold-atom quantum simulators.
arXiv Detail & Related papers (2022-04-13T18:00:01Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.