QBism and Relational Quantum Mechanics compared
- URL: http://arxiv.org/abs/2108.13977v1
- Date: Tue, 31 Aug 2021 17:00:50 GMT
- Title: QBism and Relational Quantum Mechanics compared
- Authors: Jacques L. Pienaar
- Abstract summary: subjective Bayesian interpretation of quantum mechanics (QBism) and Rovelli's relational interpretation of quantum mechanics (RQM) are both notable for embracing the radical idea that measurement outcomes correspond to events whose occurrence (or not) is relative to an observer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The subjective Bayesian interpretation of quantum mechanics (QBism) and
Rovelli's relational interpretation of quantum mechanics (RQM) are both notable
for embracing the radical idea that measurement outcomes correspond to events
whose occurrence (or not) is relative to an observer. Here we provide a
detailed study of their similarities and especially their differences.
Related papers
- Two Results in the Quantum Theory of Measurements [44.99833362998488]
The first one clarifies and amends von Neumann's Measurement Postulate used in the Copenhagen interpretation of quantum mechanics.
The second one clarifies the relationship between events'' and measurements'' and the meaning of measurements in the $ETH$-Approach to quantum mechanics.
arXiv Detail & Related papers (2023-12-01T14:05:04Z) - Relational Quantum Mechanics is Still Incompatible with Quantum Mechanics [0.0]
We show that a central concept in Quantum Mechanics, are inconsistent with Quantum Mechanics.
Our work has been criticized by Cavalcanti, Di Biagio, Rovelli (CDR)
arXiv Detail & Related papers (2023-10-27T09:34:17Z) - Relational Quantum Mechanics and Contextuality [0.0]
I discuss the hypothesis that RQM follows contextuality that changes the system.
I then examine how the approach of quantum logic in formal histories can be used to clarify which information about a system can be shared between different observers.
arXiv Detail & Related papers (2023-08-17T11:25:35Z) - Relative Facts of Relational Quantum Mechanics are Incompatible with
Quantum Mechanics [0.0]
RQM measurement arise from interactions which entangle a system $$S and an observer $A$ without decoherence.
The criterion states that whenever an interpretation introduces a notion of outcomes, these outcomes must follow the probability distribution specified by the Born rule.
arXiv Detail & Related papers (2022-08-24T23:15:00Z) - Randomness in Relational Quantum Mechanics [0.0]
relational interpretation of quantum mechanics (RQM) introduced in its present form by Carlo Rovelli in 1996.
RQM assumes that all objects in the universe are quantum objects, regardless of their material complexity.
concept of randomness associated with quantum state variables in RQM differs from that in other QM interpretations.
arXiv Detail & Related papers (2022-05-17T14:27:27Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Objective quantum fields, retrocausality and ontology [0.0]
We discuss an interpretation of quantum mechanics that we call objective quantum field theory (OQFT)
The ideas and analyses of Einstein and Bohr through to more recent approaches to objective realism are discussed.
arXiv Detail & Related papers (2021-08-26T00:21:33Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.