論文の概要: Lower Bounds on the Total Variation Distance Between Mixtures of Two
Gaussians
- arxiv url: http://arxiv.org/abs/2109.01064v1
- Date: Thu, 2 Sep 2021 16:32:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-03 13:40:01.690710
- Title: Lower Bounds on the Total Variation Distance Between Mixtures of Two
Gaussians
- Title(参考訳): 2つのガウスの混合点間の全変動距離に関する下界
- Authors: Sami Davies, Arya Mazumdar, Soumyabrata Pal, Cyrus Rashtchian
- Abstract要約: 混合系の全変動距離と特性関数の接続を利用する。
2成分ガウス混合系の対間の全変動距離の新しい下界を導出する。
- 参考スコア(独自算出の注目度): 45.392805695921666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixtures of high dimensional Gaussian distributions have been studied
extensively in statistics and learning theory. While the total variation
distance appears naturally in the sample complexity of distribution learning,
it is analytically difficult to obtain tight lower bounds for mixtures.
Exploiting a connection between total variation distance and the characteristic
function of the mixture, we provide fairly tight functional approximations.
This enables us to derive new lower bounds on the total variation distance
between pairs of two-component Gaussian mixtures that have a shared covariance
matrix.
- Abstract(参考訳): 高次元ガウス分布の混合は統計学と学習理論で広く研究されている。
分布学習では,全変動距離が自然に現れるが,混合物の厳密な下界を得るのは解析的に困難である。
混合物の総変動距離と特性関数の接続を爆発させることにより, かなり厳密な関数近似を与える。
これにより共有共分散行列を持つ2成分ガウス混合の対間の全変動距離の新たな下界を導出することができる。
関連論文リスト
- Learning general Gaussian mixtures with efficient score matching [16.06356123715737]
我々は、$d$次元で$k$ガウシアンの混合を学習する問題を研究する。
我々は、下層の混合成分について分離を前提としない。
我々は、ターゲット混合物から$dmathrmpoly(k/varepsilon)$サンプルを抽出し、サンプル-ポリノミカル時間で実行し、サンプリング器を構築するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-29T17:30:36Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - On the best approximation by finite Gaussian mixtures [7.084611118322622]
一般ガウス位置混合を有限混合で近似する問題を考える。
所定の精度を達成する有限混合の最小順序は定数係数で決定される。
論文 参考訳(メタデータ) (2024-04-13T06:57:44Z) - A numerical approximation method for the Fisher-Rao distance between
multivariate normal distributions [12.729120803225065]
正規分布に結合する離散曲線を用いて、ジェフリーズ発散の平方根による曲線上の連続した正規分布間のラオ距離を近似する。
我々は, 数値近似を下界と上界の両方と比較し, 近似手法の質評価を行った。
論文 参考訳(メタデータ) (2023-02-16T09:44:55Z) - Theoretical Error Analysis of Entropy Approximation for Gaussian Mixture [0.7499722271664147]
本稿では,真のエントロピーと近似値との近似誤差を分析し,この近似が有効に動作するかどうかを明らかにする。
我々の結果は、この近似が高次元問題でうまく機能することを保証している。
論文 参考訳(メタデータ) (2022-02-26T04:49:01Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
バイナリ密度比推定(DRE)は多くの最先端の機械学習アルゴリズムの基礎を提供する。
ブレグマン最小化の発散の観点から一般的な枠組みを開発する。
我々のフレームワークはバイナリDREでそれらのフレームワークを厳格に一般化する手法に導かれることを示す。
論文 参考訳(メタデータ) (2021-12-07T01:23:20Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
シャッフルに基づく変種(ミニバッチと局所ランダムリシャッフル)について検討する。
ポリアック・ロジャシエヴィチ条件を満たす滑らかな函数に対して、これらのシャッフル型不変量(英語版)(shuffling-based variants)がそれらの置換式よりも早く収束することを示す収束境界を得る。
我々は, 同期シャッフル法と呼ばれるアルゴリズムの修正を提案し, ほぼ均一な条件下では, 下界よりも収束速度が速くなった。
論文 参考訳(メタデータ) (2021-10-20T02:25:25Z) - Uniform Convergence Rates for Maximum Likelihood Estimation under
Two-Component Gaussian Mixture Models [13.769786711365104]
パラメータ推定のための最大極大推定器と最小極小境界に対する一様収束率を導出する。
混合成分の混合割合は, 既知, 固定されていると仮定するが, 混合成分の分離仮定は行わない。
論文 参考訳(メタデータ) (2020-06-01T04:13:48Z) - Minimax Optimal Estimation of KL Divergence for Continuous Distributions [56.29748742084386]
Kullback-Leibler の同一および独立に分布するサンプルからの発散は、様々な領域において重要な問題である。
単純で効果的な推定器の1つは、これらのサンプル間の近辺 k に基づいている。
論文 参考訳(メタデータ) (2020-02-26T16:37:37Z) - Algebraic and Analytic Approaches for Parameter Learning in Mixture
Models [66.96778152993858]
1次元の混合モデルにおけるパラメータ学習のための2つの異なるアプローチを提案する。
これらの分布のいくつかについては、パラメータ推定の最初の保証を示す。
論文 参考訳(メタデータ) (2020-01-19T05:10:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。