論文の概要: On the best approximation by finite Gaussian mixtures
- arxiv url: http://arxiv.org/abs/2404.08913v1
- Date: Sat, 13 Apr 2024 06:57:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 18:13:13.330661
- Title: On the best approximation by finite Gaussian mixtures
- Title(参考訳): 有限ガウス混合による最適近似について
- Authors: Yun Ma, Yihong Wu, Pengkun Yang,
- Abstract要約: 一般ガウス位置混合を有限混合で近似する問題を考える。
所定の精度を達成する有限混合の最小順序は定数係数で決定される。
- 参考スコア(独自算出の注目度): 7.084611118322622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of approximating a general Gaussian location mixture by finite mixtures. The minimum order of finite mixtures that achieve a prescribed accuracy (measured by various $f$-divergences) is determined within constant factors for the family of mixing distributions with compactly support or appropriate assumptions on the tail probability including subgaussian and subexponential. While the upper bound is achieved using the technique of local moment matching, the lower bound is established by relating the best approximation error to the low-rank approximation of certain trigonometric moment matrices, followed by a refined spectral analysis of their minimum eigenvalue. In the case of Gaussian mixing distributions, this result corrects a previous lower bound in [Allerton Conference 48 (2010) 620-628].
- Abstract(参考訳): 一般ガウス位置混合を有限混合で近似する問題を考える。
所定の精度(様々な$f$-divergencesで測定される)を達成する有限混合の最小順序は、コンパクトに支持された混合分布の族に対する定数因子や、亜ガウスおよび亜指数を含む尾確率に関する適切な仮定の中で決定される。
上界は局所モーメントマッチングの手法を用いて達成されるが、下界は、最良近似誤差と特定の三角モーメント行列の低ランク近似とを関連付け、次いで最小固有値のスペクトル分析を行う。
ガウス混合分布の場合、この結果は [Allerton Conference 48 (2010) 620-628] における以前の下界を補正する。
関連論文リスト
- Summarizing Bayesian Nonparametric Mixture Posterior -- Sliced Optimal Transport Metrics for Gaussian Mixtures [10.694077392690447]
混合モデルの後方推論を要約する既存の方法は、クラスタリングのための暗黙のランダムパーティションの点推定を同定することに焦点を当てている。
本研究では,非パラメトリックベイズ混合モデルにおける後部推論を要約し,混合度(または混合度)の密度推定を推論対象として優先順位付けする手法を提案する。
論文 参考訳(メタデータ) (2024-11-22T02:15:38Z) - Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps [77.8999425439444]
本稿では,凸/凹凸 min-max 問題に対して,ほぼ最適収束率を許容する一階法を提案する。
我々の研究は、近点法の更新規則を精度良く近似できるという事実に基づいている。
論文 参考訳(メタデータ) (2023-01-10T12:18:47Z) - Theoretical Error Analysis of Entropy Approximation for Gaussian Mixture [0.7499722271664147]
本稿では,真のエントロピーと近似値との近似誤差を分析し,この近似が有効に動作するかどうかを明らかにする。
我々の結果は、この近似が高次元問題でうまく機能することを保証している。
論文 参考訳(メタデータ) (2022-02-26T04:49:01Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
本稿では、ノイズや非ガウス的なデータに対するデータ計算の欠如に対処する。
楕円分布と潜在的な欠落データを扱う特性を混合した新しいEMアルゴリズムについて検討した。
合成データの実験的結果は,提案アルゴリズムが外れ値に対して頑健であり,非ガウスデータで使用可能であることを示す。
論文 参考訳(メタデータ) (2022-01-28T10:01:37Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
この研究は、2-ワッサーシュタイン距離におけるサンプリング誤差の非同相解析のための一般的な枠組みを提供する。
我々の理論解析は数値実験によってさらに検証される。
論文 参考訳(メタデータ) (2021-09-08T18:00:05Z) - Lower Bounds on the Total Variation Distance Between Mixtures of Two
Gaussians [45.392805695921666]
混合系の全変動距離と特性関数の接続を利用する。
2成分ガウス混合系の対間の全変動距離の新しい下界を導出する。
論文 参考訳(メタデータ) (2021-09-02T16:32:16Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
本稿では,ランダムウォークラプラシアンを用いたグラフスペクトル埋め込みが,ノード次数に対して完全に補正されたベクトル表現を生成することを示す。
次数補正ブロックモデルの特別な場合、埋め込みはK個の異なる点に集中し、コミュニティを表す。
論文 参考訳(メタデータ) (2021-05-03T16:36:27Z) - Consistent Estimation of Identifiable Nonparametric Mixture Models from
Grouped Observations [84.81435917024983]
この研究は、グループ化された観測から任意の同定可能な混合モデルを一貫して推定するアルゴリズムを提案する。
ペア化された観測のために実践的な実装が提供され、アプローチは既存の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-06-12T20:44:22Z) - Uniform Convergence Rates for Maximum Likelihood Estimation under
Two-Component Gaussian Mixture Models [13.769786711365104]
パラメータ推定のための最大極大推定器と最小極小境界に対する一様収束率を導出する。
混合成分の混合割合は, 既知, 固定されていると仮定するが, 混合成分の分離仮定は行わない。
論文 参考訳(メタデータ) (2020-06-01T04:13:48Z) - Minimax Optimal Estimation of KL Divergence for Continuous Distributions [56.29748742084386]
Kullback-Leibler の同一および独立に分布するサンプルからの発散は、様々な領域において重要な問題である。
単純で効果的な推定器の1つは、これらのサンプル間の近辺 k に基づいている。
論文 参考訳(メタデータ) (2020-02-26T16:37:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。