論文の概要: Quantum Sampling Algorithms, Phase Transitions, and Computational
Complexity
- arxiv url: http://arxiv.org/abs/2109.03007v1
- Date: Tue, 7 Sep 2021 11:43:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 22:52:53.122725
- Title: Quantum Sampling Algorithms, Phase Transitions, and Computational
Complexity
- Title(参考訳): 量子サンプリングアルゴリズム、位相遷移、計算複雑性
- Authors: Dominik S. Wild, Dries Sels, Hannes Pichler, Cristian Zanoci, Mikhail
D. Lukin
- Abstract要約: 確率分布から独立したサンプルを描画することはモンテカルロアルゴリズム、機械学習、統計物理学における重要な計算問題である。
この問題は原則として、確率分布全体を符号化した量子状態を作成し、続いて射影測定を行うことで、量子コンピュータ上で解決することができる。
本研究では,イジング連鎖,異なるグラフ上のハードスフィアモデル,非構造探索問題を符号化したモデルなど,様々なモデルのギブス分布に対して,そのような量子状態の漸近的準備の複雑さについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drawing independent samples from a probability distribution is an important
computational problem with applications in Monte Carlo algorithms, machine
learning, and statistical physics. The problem can in principle be solved on a
quantum computer by preparing a quantum state that encodes the entire
probability distribution followed by a projective measurement. We investigate
the complexity of adiabatically preparing such quantum states for the Gibbs
distributions of various classical models including the Ising chain,
hard-sphere models on different graphs, and a model encoding the unstructured
search problem. By constructing a parent Hamiltonian, whose ground state is the
desired quantum state, we relate the asymptotic scaling of the state
preparation time to the nature of transitions between distinct quantum phases.
These insights enable us to identify adiabatic paths that achieve a quantum
speedup over classical Markov chain algorithms. In addition, we show that
parent Hamiltonians for the problem of sampling from independent sets on
certain graphs can be naturally realized with neutral atoms interacting via
highly excited Rydberg states.
- Abstract(参考訳): 確率分布から独立したサンプルを描くことはモンテカルロアルゴリズム、機械学習、統計物理学で応用される重要な計算問題である。
この問題は、確率分布全体をエンコードした量子状態と射影計測を組み合わせることで、原理上量子コンピュータ上で解くことができる。
本研究では,イジング連鎖,異なるグラフ上のハードスフィアモデル,非構造探索問題を符号化したモデルなど,古典的モデルのギブス分布に対するそのような量子状態の漸近的準備の複雑さについて検討する。
基底状態が所望の量子状態である親ハミルトニアンを構成することにより、状態準備時間の漸近的スケーリングと、異なる量子位相間の遷移の性質を関連付ける。
これらの知見により、古典的なマルコフ連鎖アルゴリズム上で量子スピードアップを達成する断熱パスを識別できる。
さらに、あるグラフ上の独立集合からのサンプリング問題に対する親ハミルトニアンは、高励起ライドバーグ状態を介して相互作用する中性原子によって自然に実現できることを示した。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
量子運動方程式 (quantum equation of motion, QEOM) はフェルミオン多体系の励起特性を計算するためのハイブリッド量子古典アルゴリズムである。
我々は、qEOMが要求される量子測定数の独立性により量子的利益を示すことを明らかに示している。
論文 参考訳(メタデータ) (2023-09-18T22:10:26Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
原子と分子の衝突に対するシュリンガー方程式を解くためのハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムはコーン変分原理の$S$-matrixバージョンに基づいており、基本散乱$S$-matrixを計算する。
大規模多原子分子の衝突をシミュレートするために,アルゴリズムをどのようにスケールアップするかを示す。
論文 参考訳(メタデータ) (2023-04-12T18:10:47Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
ジャジンスキー等式から動機付けられたアルゴリズムを用いて, 有限温度可観測体がどのように得られるかを示す。
長範囲の逆場イジングモデルにおける有限温度相転移は、捕捉されたイオン量子シミュレータで特徴づけられることを示す。
論文 参考訳(メタデータ) (2022-06-03T18:00:02Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
一般的な離散因子モデルから、偏りのない、独立なサンプルを確実に生成できる最初の方法を提案する。
本手法は多体相互作用と互換性があり,その成功確率は変数数に依存しない。
量子シミュレーションおよび実際の量子ハードウェアを用いた実験は,本手法が量子コンピュータ上でサンプリングおよびパラメータ学習を行うことができることを示す。
論文 参考訳(メタデータ) (2022-06-01T11:03:51Z) - Quantum computing for classical problems: Variational Quantum
Eigensolver for activated processes [0.0]
本稿では,Fokker-Planck-Smoluchowski固有値問題を解くための変分量子固有解法の開発と実装について報告する。
量子化学問題に対処するために一般的に採用されるそのようなアルゴリズムは、量子コンピュータの新しい応用への道を開く古典的なシステムに効果的に適用可能であることを示す。
論文 参考訳(メタデータ) (2021-07-27T18:16:16Z) - Variational Quantum Eigensolver for SU($N$) Fermions [0.0]
変分量子アルゴリズムは、ノイズの多い中間スケール量子コンピュータのパワーを活用することを目的としている。
変分量子固有解法を$N$成分フェルミオンの基底状態特性の研究に応用する。
提案手法は,多体系の電流ベース量子シミュレータの基礎を定式化したものである。
論文 参考訳(メタデータ) (2021-06-29T16:39:30Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
少数のアンシラ量子ビットを用いて環境との相互作用をシミュレートするデジタル量子アルゴリズムを開発した。
逆イジングモデルの熱状態のシミュレーションによるアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-03-04T18:21:00Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
我々は,非線型O(3)シグマモデルの固定点が,格子サイトあたり2キュービットしか持たないスピンモデルの量子相転移付近で再現可能であることを示す。
本稿では,弱い結合状態と量子臨界状態の両方において,断熱的基底状態の準備が複雑になる結果を得るためにトロッター法を適用した。
非単位ランダム化シミュレーション法に基づく量子アルゴリズムの提案と解析を行う。
論文 参考訳(メタデータ) (2020-06-28T23:44:12Z) - Quantum Sampling Algorithms for Near-Term Devices [0.0]
ギブス分布全体を符号化することで、偏りのないサンプルを提供する量子アルゴリズムのファミリを導入する。
このアプローチが従来のマルコフ連鎖アルゴリズムの高速化につながることを示す。
短期量子デバイス上で、潜在的に有用なサンプリングアルゴリズムを探索する扉を開く。
論文 参考訳(メタデータ) (2020-05-28T14:46:20Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
本稿では, 量子情報理論の文脈において, 統計的複雑性尺度の量子バージョンを導入し, 量子次数-次数遷移のシグナル伝達関数として利用する。
我々はこの測度を2つの正確に解けるハミルトンモデル、すなわち1D$量子イジングモデルとハイゼンベルクXXZスピン-1/2$チェーンに適用する。
また、考察されたモデルに対して、この測度を1量子および2量子の還元状態に対して計算し、その挙動を有限系のサイズと熱力学的限界に対して解析する。
論文 参考訳(メタデータ) (2020-02-05T00:45:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。