論文の概要: On Quantum Circuits for Discrete Graphical Models
- arxiv url: http://arxiv.org/abs/2206.00398v1
- Date: Wed, 1 Jun 2022 11:03:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 13:17:16.426089
- Title: On Quantum Circuits for Discrete Graphical Models
- Title(参考訳): 離散グラフィカルモデルのための量子回路について
- Authors: Nico Piatkowski, Christa Zoufal
- Abstract要約: 一般的な離散因子モデルから、偏りのない、独立なサンプルを確実に生成できる最初の方法を提案する。
本手法は多体相互作用と互換性があり,その成功確率は変数数に依存しない。
量子シミュレーションおよび実際の量子ハードウェアを用いた実験は,本手法が量子コンピュータ上でサンプリングおよびパラメータ学習を行うことができることを示す。
- 参考スコア(独自算出の注目度): 1.0965065178451106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphical models are useful tools for describing structured high-dimensional
probability distributions. Development of efficient algorithms for generating
unbiased and independent samples from graphical models remains an active
research topic. Sampling from graphical models that describe the statistics of
discrete variables is a particularly challenging problem, which is intractable
in the presence of high dimensions. In this work, we provide the first method
that allows one to provably generate unbiased and independent samples from
general discrete factor models with a quantum circuit. Our method is compatible
with multi-body interactions and its success probability does not depend on the
number of variables. To this end, we identify a novel embedding of the
graphical model into unitary operators and provide rigorous guarantees on the
resulting quantum state. Moreover, we prove a unitary Hammersley-Clifford
theorem -- showing that our quantum embedding factorizes over the cliques of
the underlying conditional independence structure. Importantly, the quantum
embedding allows for maximum likelihood learning as well as maximum a
posteriori state approximation via state-of-the-art hybrid quantum-classical
methods. Finally, the proposed quantum method can be implemented on current
quantum processors. Experiments with quantum simulation as well as actual
quantum hardware show that our method can carry out sampling and parameter
learning on quantum computers.
- Abstract(参考訳): グラフィカルモデルは構造化された高次元確率分布を記述するのに有用なツールである。
グラフィカルモデルから非バイアスで独立したサンプルを生成する効率的なアルゴリズムの開発は、現在も活発な研究トピックである。
離散変数の統計を記述するグラフィカルモデルからのサンプリングは特に難しい問題であり、高次元の存在下では難解である。
本研究では,量子回路を用いた一般離散因子モデルから偏りのない独立なサンプルを生成するための最初の方法を提案する。
本手法は多体相互作用に対応しており,その成功確率は変数数に依存しない。
この目的のために、我々はグラフィカルモデルのユニタリ作用素への新しい埋め込みを特定し、結果の量子状態に対する厳密な保証を提供する。
さらに、一意的なハマーズリー・クリフォードの定理を証明し、量子埋め込みが基礎となる条件独立構造の傾きを分解することを示す。
重要なことに、量子埋め込みは最大極大学習と最先端のハイブリッド量子古典的手法による最大後続状態近似を可能にする。
最後に,提案手法を現在の量子プロセッサに実装することができる。
量子シミュレーションおよび実際の量子ハードウェアを用いた実験は,本手法が量子コンピュータ上でサンプリングおよびパラメータ学習を行うことを示す。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Statistical learning on randomized data to verify quantum state k-designs [0.0]
純粋状態のランダムアンサンブルは、量子物理学の様々な側面において非常に重要であることが証明されている。
完全にランダムなアンサンブルを生成するのは 実験的に困難ですが 近似は 同様に有用です
ランダム性の度合いを検証することは、多体システム上で完全な量子状態トモグラフィーを実行するのと同様に、高価なタスクである可能性がある。
論文 参考訳(メタデータ) (2023-05-02T14:46:28Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
量子モデルは暗黙の確率予測器を実装し、測定ショットを通じて各入力に対して複数のランダムな決定を生成する。
本稿では、そのようなランダム性を利用して、モデルの不確実性を確実に捉えることができる分類と回帰の両方の予測セットを定義することを提案する。
論文 参考訳(メタデータ) (2023-04-06T22:05:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
我々は、係数に応じてハミルトン式からサンプリングしてランダムな積公式を構築するqDriftプロトコルを導入する。
サンプリング段階における個別のシミュレーションコストを考慮し、同じ精度でシミュレーションコストを削減可能であることを示す。
格子核効果場理論を用いて数値シミュレーションを行った結果, 実験結果が得られた。
論文 参考訳(メタデータ) (2022-12-12T15:06:32Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
パラメータ化混合状態に対する量子自然勾配降下の一般化を導入する。
また、堅牢な一階近似アルゴリズム、Quantum-Probabilistic Mirror Descentを提供する。
我々のアプローチは、モデル選択における柔軟性を実現するために、それまでのサンプル効率の手法を拡張しました。
論文 参考訳(メタデータ) (2022-06-09T17:58:15Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Quantum Sampling Algorithms, Phase Transitions, and Computational
Complexity [0.0]
確率分布から独立したサンプルを描画することはモンテカルロアルゴリズム、機械学習、統計物理学における重要な計算問題である。
この問題は原則として、確率分布全体を符号化した量子状態を作成し、続いて射影測定を行うことで、量子コンピュータ上で解決することができる。
本研究では,イジング連鎖,異なるグラフ上のハードスフィアモデル,非構造探索問題を符号化したモデルなど,様々なモデルのギブス分布に対して,そのような量子状態の漸近的準備の複雑さについて検討する。
論文 参考訳(メタデータ) (2021-09-07T11:43:45Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
少数のアンシラ量子ビットを用いて環境との相互作用をシミュレートするデジタル量子アルゴリズムを開発した。
逆イジングモデルの熱状態のシミュレーションによるアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-03-04T18:21:00Z) - Enhancing Generative Models via Quantum Correlations [1.6099403809839032]
確率分布から抽出したサンプルを用いた生成モデリングは教師なし機械学習の強力なアプローチである。
このような量子相関が生成モデリングの強力な資源となることを理論的に示す。
この分離を標準的な機械学習データセットで数値的にテストし、実用的な問題に耐えることを示します。
論文 参考訳(メタデータ) (2021-01-20T22:57:22Z) - Learnability and Complexity of Quantum Samples [26.425493366198207]
量子回路が与えられた場合、量子コンピュータは古典的コンピュータよりも出力分布を指数関数的に高速にサンプリングすることができる。
一定のトレーニング時間でnでスケールするトレーニングパラメータを持つモデルを用いて、基礎となる量子分布を学習できるだろうか?
本稿では,Deep Boltzmann Machine (DBM), Generative Adrial Networks (GANs), Long Short-Term Memory (LSTM), Autoregressive GANの4種類の生成モデルについて,深部ランダム回路で生成された量子データセットの学習について検討する。
論文 参考訳(メタデータ) (2020-10-22T18:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。