Deep Reinforcement Q-Learning for Intelligent Traffic Signal Control
with Partial Detection
- URL: http://arxiv.org/abs/2109.14337v1
- Date: Wed, 29 Sep 2021 10:42:33 GMT
- Title: Deep Reinforcement Q-Learning for Intelligent Traffic Signal Control
with Partial Detection
- Authors: Romain Ducrocq and Nadir Farhi
- Abstract summary: Intelligent traffic signal controllers, applying DQN algorithms to traffic light policy optimization, efficiently reduce traffic congestion by adjusting traffic signals to real-time traffic.
Most propositions in the literature however consider that all vehicles at the intersection are detected, an unrealistic scenario.
We propose a deep reinforcement Q-learning model to optimize traffic signal control at an isolated intersection, in a partially observable environment with connected vehicles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent traffic signal controllers, applying DQN algorithms to traffic
light policy optimization, efficiently reduce traffic congestion by adjusting
traffic signals to real-time traffic. Most propositions in the literature
however consider that all vehicles at the intersection are detected, an
unrealistic scenario. Recently, new wireless communication technologies have
enabled cost-efficient detection of connected vehicles by infrastructures. With
only a small fraction of the total fleet currently equipped, methods able to
perform under low detection rates are desirable. In this paper, we propose a
deep reinforcement Q-learning model to optimize traffic signal control at an
isolated intersection, in a partially observable environment with connected
vehicles. First, we present the novel DQN model within the RL framework. We
introduce a new state representation for partially observable environments and
a new reward function for traffic signal control, and provide a network
architecture and tuned hyper-parameters. Second, we evaluate the performances
of the model in numerical simulations on multiple scenarios, in two steps. At
first in full detection against existing actuated controllers, then in partial
detection with loss estimates for proportions of connected vehicles. Finally,
from the obtained results, we define thresholds for detection rates with
acceptable and optimal performance levels.
Related papers
- Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
Traffic signal control systems (TSCSs) are integral to intelligent traffic management, fostering efficient vehicle flow.
Traditional approaches often simplify road networks into standard graphs.
We propose a novel TSCS framework to realize intelligent traffic control.
arXiv Detail & Related papers (2024-04-17T02:46:18Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Reinforcement Learning Approaches for Traffic Signal Control under
Missing Data [5.896742981602458]
In real-world urban scenarios, missing observation of traffic states may frequently occur due to the lack of sensors.
We propose two solutions: the first one imputes the traffic states to enable adaptive control, and the second one imputes both states and rewards to enable adaptive control and the training of RL agents.
arXiv Detail & Related papers (2023-04-21T03:26:33Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Data-Driven Intersection Management Solutions for Mixed Traffic of
Human-Driven and Connected and Automated Vehicles [0.0]
This dissertation proposes two solutions for urban traffic control in the presence of connected and automated vehicles.
First, a centralized platoon-based controller is proposed for the cooperative intersection management problem.
Second, a data-driven approach is proposed for adaptive signal control in the presence of connected vehicles.
arXiv Detail & Related papers (2020-12-10T01:44:45Z) - A Traffic Light Dynamic Control Algorithm with Deep Reinforcement
Learning Based on GNN Prediction [5.585321463602587]
GPlight is a deep reinforcement learning algorithm integrated with graph neural network (GNN)
In GPlight, the graph neural network (GNN) is first used to predict the future short-term traffic flow at the intersections.
arXiv Detail & Related papers (2020-09-29T01:09:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.