PyHard: a novel tool for generating hardness embeddings to support
data-centric analysis
- URL: http://arxiv.org/abs/2109.14430v1
- Date: Wed, 29 Sep 2021 14:08:26 GMT
- Title: PyHard: a novel tool for generating hardness embeddings to support
data-centric analysis
- Authors: Pedro Yuri Arbs Paiva, Kate Smith-Miles, Maria Gabriela Valeriano and
Ana Carolina Lorena
- Abstract summary: PyHard produces a hardness embedding of a dataset relating the predictive performance of multiple ML models.
The user can interact with this embedding in multiple ways to obtain useful insights about data and algorithmic performance.
We show in a COVID prognosis dataset how this analysis supported the identification of pockets of hard observations that challenge ML models.
- Score: 0.38233569758620045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For building successful Machine Learning (ML) systems, it is imperative to
have high quality data and well tuned learning models. But how can one assess
the quality of a given dataset? And how can the strengths and weaknesses of a
model on a dataset be revealed? Our new tool PyHard employs a methodology known
as Instance Space Analysis (ISA) to produce a hardness embedding of a dataset
relating the predictive performance of multiple ML models to estimated instance
hardness meta-features. This space is built so that observations are
distributed linearly regarding how hard they are to classify. The user can
visually interact with this embedding in multiple ways and obtain useful
insights about data and algorithmic performance along the individual
observations of the dataset. We show in a COVID prognosis dataset how this
analysis supported the identification of pockets of hard observations that
challenge ML models and are therefore worth closer inspection, and the
delineation of regions of strengths and weaknesses of ML models.
Related papers
- How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation [2.1184929769291294]
This paper presents a novel synthetic dataset designed to evaluate the proficiency of large language models in interpreting data visualizations.
Our dataset is generated using controlled parameters to ensure comprehensive coverage of potential real-world scenarios.
We employ multimodal text prompts with questions related to visual data in images to benchmark several state-of-the-art models.
arXiv Detail & Related papers (2024-09-04T11:19:17Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
Data slice finding is an emerging technique for validating machine learning (ML) models by identifying and analyzing subgroups in a dataset that exhibit poor performance.
This approach faces significant challenges, including the laborious and costly requirement for additional metadata.
We introduce AttributionScanner, an innovative human-in-the-loop Visual Analytics (VA) system, designed for metadata-free data slice finding.
Our system identifies interpretable data slices that involve common model behaviors and visualizes these patterns through an Attribution Mosaic design.
arXiv Detail & Related papers (2024-01-12T09:17:32Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - On Inductive Biases for Machine Learning in Data Constrained Settings [0.0]
This thesis explores a different answer to the problem of learning expressive models in data constrained settings.
Instead of relying on big datasets to learn neural networks, we will replace some modules by known functions reflecting the structure of the data.
Our approach falls under the hood of "inductive biases", which can be defined as hypothesis on the data at hand restricting the space of models to explore.
arXiv Detail & Related papers (2023-02-21T14:22:01Z) - Characterizing instance hardness in classification and regression
problems [0.0]
This paper presents a set of meta-features that aim at characterizing which instances of a dataset are hardest to have their label predicted accurately.
Both classification and regression problems are considered.
A Python package containing all implementations is also provided.
arXiv Detail & Related papers (2022-12-04T19:16:43Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - HardVis: Visual Analytics to Handle Instance Hardness Using Undersampling and Oversampling Techniques [48.82319198853359]
HardVis is a visual analytics system designed to handle instance hardness mainly in imbalanced classification scenarios.
Users can explore subsets of data from different perspectives to decide all those parameters.
The efficacy and effectiveness of HardVis are demonstrated with a hypothetical usage scenario and a use case.
arXiv Detail & Related papers (2022-03-29T17:04:16Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z) - Dataset Cartography: Mapping and Diagnosing Datasets with Training
Dynamics [118.75207687144817]
We introduce Data Maps, a model-based tool to characterize and diagnose datasets.
We leverage a largely ignored source of information: the behavior of the model on individual instances during training.
Our results indicate that a shift in focus from quantity to quality of data could lead to robust models and improved out-of-distribution generalization.
arXiv Detail & Related papers (2020-09-22T20:19:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.