論文の概要: PINNup: Robust neural network wavefield solutions using frequency
upscaling and neuron splitting
- arxiv url: http://arxiv.org/abs/2109.14536v1
- Date: Wed, 29 Sep 2021 16:35:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-30 14:36:34.376430
- Title: PINNup: Robust neural network wavefield solutions using frequency
upscaling and neuron splitting
- Title(参考訳): PINNup:周波数アップスケーリングとニューロン分割を用いたロバストニューラルネットワークウェーブフィールドソリューション
- Authors: Xinquan Huang, Tariq Alkhalifah
- Abstract要約: 本稿では,周波数アップスケーリングとニューロン分割を用いた新しいPINNの実装を提案する。
提案したPINNは収束と精度において顕著な優位性を示す。
2層モデルでニューロンベースの高周波波動場解が得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving for the frequency-domain scattered wavefield via physics-informed
neural network (PINN) has great potential in seismic modeling and inversion.
However, when dealing with high-frequency wavefields, its accuracy and training
cost limits its applications. Thus, we propose a novel implementation of PINN
using frequency upscaling and neuron splitting, which allows the neural network
model to grow in size as we increase the frequency while leveraging the
information from the pre-trained model for lower-frequency wavefields,
resulting in fast convergence to high-accuracy solutions. Numerical results
show that, compared to the commonly used PINN with random initialization, the
proposed PINN exhibits notable superiority in terms of convergence and accuracy
and can achieve neuron based high-frequency wavefield solutions with a
two-hidden-layer model.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)による周波数領域散乱波面の解法は、地震モデリングとインバージョンに大きな可能性を秘めている。
しかし、高周波波動場を扱う場合、その精度と訓練コストは応用を制限する。
そこで本研究では,低周波波波場に対する事前学習モデルからの情報を活用しつつ,ニューラルネットワークモデルのサイズを増加させ,高精度解への収束を高速化する,周波数上昇とニューロン分割を用いた新しい実装を提案する。
数値計算の結果, ランダム初期化を用いたPINNと比較して, 提案したPINNは収束性と精度の点で顕著な優位性を示し, 2層モデルでニューロンベースの高周波波動解を実現できることがわかった。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Physics-informed neural wavefields with Gabor basis functions [4.07926531936425]
本稿では,ニューラルネットワークのウェーブフィールド解の効率性と精度を高める手法を提案する。
具体的には、ヘルムホルツ方程式に対して、最後の隠れ層を構成するGabor層で完全に連結されたニューラルネットワークモデルを拡張する。
ガボル関数のこれらの/係数は、非線形活性化関数を含む以前の隠れ層から学習される。
論文 参考訳(メタデータ) (2023-10-16T17:30:33Z) - Data-driven localized waves and parameter discovery in the massive
Thirring model via extended physics-informed neural networks with interface
zones [3.522950356329991]
深層学習を用いた大規模Thiring(MT)モデルにおいて,データ駆動型局所波動解とパラメータ発見について検討した。
高次局所波解に対しては、拡張PINN(XPINN)とドメイン分解を用いる。
実験結果から, XPINNsの改良により, 収束速度が速く, 計算の複雑さを低減できることがわかった。
論文 参考訳(メタデータ) (2023-09-29T13:50:32Z) - GaborPINN: Efficient physics informed neural networks using
multiplicative filtered networks [0.0]
物理インフォームドニューラルネットワーク(PINN)は、ニューラルネットワーク(NN)で表される機能的ウェーブフィールドソリューションを提供する
本稿では,学習における波動場の特徴のいくつかを組み込んだ乗算フィルタネットワークを用いた改良PINNを提案する。
提案手法は,従来のPINNと比較して,収束速度が最大2マグニチュード向上する。
論文 参考訳(メタデータ) (2023-08-10T19:51:00Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Solving Seismic Wave Equations on Variable Velocity Models with Fourier
Neural Operator [3.2307366446033945]
本稿では,FNOに基づく解法を効率的に学習するための新しいフレームワークであるFourier Neural operator (PFNO)を提案する。
数値実験により、複雑な速度モデルによるFNOとPFNOの精度が示された。
PFNOは、従来の有限差分法と比較して、大規模なテストデータセットの計算効率が高いことを認めている。
論文 参考訳(メタデータ) (2022-09-25T22:25:57Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
最近提案された物理インフォームドニューラルネットワーク(PINN)は、幅広い偏微分方程式(PDE)を解くことに成功している。
本稿では、波動方程式の代わりにPINNを用いて周波数領域における音響および粘性音響散乱波動方程式を解き、震源の摂動を除去する。
PMLと2次ニューロンは、その効果と減衰を改善できることを示し、この改善の理由を議論する。
論文 参考訳(メタデータ) (2022-08-16T13:29:01Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
PNN(Polynomial Neural Network)は、高頻度情報を重要視する画像生成と顔認識に特に有効であることが示されている。
これまでの研究では、ニューラルネットワークが低周波関数に対して$textitspectral bias$を示しており、トレーニング中に低周波成分のより高速な学習をもたらすことが示されている。
このような研究に触発されて、我々はPNNのTangent Kernel(NTK)のスペクトル分析を行う。
我々は、最近提案されたPNNのパラメトリゼーションである$Pi$-Netファミリがスピードアップすることを発見した。
論文 参考訳(メタデータ) (2022-02-27T23:12:43Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。