An absolutely stable open time crystal
- URL: http://arxiv.org/abs/2110.00585v1
- Date: Fri, 1 Oct 2021 18:00:00 GMT
- Title: An absolutely stable open time crystal
- Authors: Quntao Zhuang, Francisco Machado, Norman Y. Yao, Michael P. Zaletel
- Abstract summary: We show that locally-interacting, periodically-driven (Floquet) Hamiltonian dynamics coupled to a Langevin bath support finite-temperature discrete time crystals.
The time crystalline order is stable to arbitrary perturbations, including those that break the time translation symmetry of the underlying drive.
- Score: 0.8602553195689513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that locally-interacting, periodically-driven (Floquet) Hamiltonian
dynamics coupled to a Langevin bath support finite-temperature discrete time
crystals with an infinite auto-correlation time. The time crystalline order is
stable to arbitrary perturbations, including those that break the time
translation symmetry of the underlying drive. Our approach utilizes a general
mapping from probabilistic cellular automata (PCA) to open classical Floquet
systems. Applying this mapping to a variant of the Toom cellular automata,
which we dub the ``$\pi$-Toom PCA'', leads to a 2D Floquet Hamiltonian with a
finite-temperature period-doubling phase transition. We provide numerical
evidence for the existence of this transition, and analyze the statistics of
the finite temperature fluctuations. Finally, we discuss how general results
from the field of probabilistic cellular automata imply the existence of
discrete time crystals in all dimensions, $D \geq 1$.
Related papers
- Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Simultaneous symmetry breaking in spontaneous Floquet states: Floquet-Nambu-Goldstone modes, Floquet thermodynamics, and the time operator [49.1574468325115]
We study simultaneous symmetry-breaking in a spontaneous Floquet state, focusing on the specific case of an atomic condensate.
We first describe the quantization of the Nambu-Goldstone (NG) modes for a stationary state simultaneously breaking several symmetries of the Hamiltonian.
We extend the formalism to Floquet states simultaneously breaking several symmetries, where Goldstone theorem translates into the emergence of Floquet-Nambu-Goldstone modes with zero quasi-energy.
arXiv Detail & Related papers (2024-02-16T16:06:08Z) - Swapping Floquet time crystal [0.0]
We study the persistence of period-doubling oscillations in time and the time-crystal properties of the Floquet spectrum.
We find that the interval of parameters where the system does not thermalize and persistent period-doubling is possible.
arXiv Detail & Related papers (2023-12-28T15:32:49Z) - Emergent time crystals from phase-space noncommutative quantum mechanics [0.0]
We show that noncommutativity drives the amplitude of periodic oscillations identified as time crystals.
A natural extension of our analysis shows how the spontaneous formation of time quasi-crystals can arise.
arXiv Detail & Related papers (2022-07-01T11:24:26Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Floquet time crystals in driven spin systems with all-to-all $p$-body
interactions [0.0]
We show the emergence of Floquet time crystal phases in the Floquet dynamics of periodically driven $p$-spin models.
We develop a framework to predict robust subharmonic response in classical area-preserving maps.
Our analysis reveals that the robustness of the time-crystal behavior is reduced as their period increases.
arXiv Detail & Related papers (2022-01-26T00:57:40Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - High-frequency expansions for time-periodic Lindblad generators [68.8204255655161]
Floquet engineering of isolated systems is often based on the concept of the effective time-independent Floquet Hamiltonian.
We show that the emerging non-Markovianity of the Floquet generator can entirely be attributed to the micromotion of the open driven system.
arXiv Detail & Related papers (2021-07-21T12:48:39Z) - Universal presence of time-crystalline phases and period-doubling
oscillations in one-dimensional Floquet topological insulators [2.3978553352626064]
We report a ubiquitous presence of topological Floquet time crystal (TFTC) in one-dimensional periodically-driven systems.
Our modeling of the time-crystalline 'ground state' can be easily realized in experimental platforms such as topological photonics and ultracold fields.
arXiv Detail & Related papers (2020-05-08T09:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.