論文の概要: Rerunning OCR -- A Machine Learning Approach to Quality Assessment and
Enhancement Prediction
- arxiv url: http://arxiv.org/abs/2110.01661v1
- Date: Mon, 4 Oct 2021 18:52:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-07 02:38:07.040582
- Title: Rerunning OCR -- A Machine Learning Approach to Quality Assessment and
Enhancement Prediction
- Title(参考訳): リランニングOCR - 品質評価と改善予測のための機械学習アプローチ
- Authors: Pit Schneider
- Abstract要約: 新しい改善されたOCRソリューションの反復は、適切な再処理候補をターゲットとする決定を強制する。
本稿はルクセンブルク国立図書館の取り組みを捉え、これらの決定を裏付けるものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Iterating with new and improved OCR solutions enforces decisions to be taken
when it comes to targeting the right reprocessing candidates. This especially
applies when the underlying data collection is of considerable size and rather
diverse in terms of fonts, languages, periods of publication and consequently
OCR quality. This article captures the efforts of the National Library of
Luxembourg to support those exact decisions. They are crucial in order to
guarantee low computational overhead and reduced quality degradation risks,
combined with a more quantifiable OCR improvement. In particular, this work
explains the methodology of the library with respect to text block level
quality assessment. As an extension of this technique, another contribution
comes in the form of a regression model that takes the enhancement potential of
a new OCR engine into account. They both mark promising approaches, especially
for cultural institutions dealing with historic data of lower quality.
- Abstract(参考訳): 新しい改善されたOCRソリューションの反復は、適切な再処理候補をターゲットとする決定を強制する。
これは特に、基礎となるデータ収集のサイズがかなり大きく、フォント、言語、出版期間、その結果ocr品質の観点からかなり多様である場合に適用される。
本稿はルクセンブルク国立図書館の取り組みを捉え、これらの決定を裏付けるものである。
計算オーバーヘッドの低減と品質劣化のリスクの低減と、より定量化されたOCRの改善を両立させるためには、これらが不可欠である。
特に本研究では,テキストブロックレベルの品質評価に関して,図書館の方法論を説明する。
この技術の延長として、新しいocrエンジンの拡張可能性を考慮した回帰モデルという形で、別の貢献がある。
どちらも、特に品質の低い歴史的データを扱う文化機関にとって有望なアプローチである。
関連論文リスト
- CLOCR-C: Context Leveraging OCR Correction with Pre-trained Language Models [0.0]
本稿では、コンテキストレバレッジOCR補正(CLOCR-C)を紹介する。
トランスフォーマーベースの言語モデル(LM)の組み込みとコンテキスト適応能力を使用して、OCRの品質を向上する。
本研究の目的は, LMがOCR後の修正を行うことができるか, 下流のNLPタスクを改善するか, 補正プロセスの一部として社会文化的コンテキストを提供することの価値を判断することである。
論文 参考訳(メタデータ) (2024-08-30T17:26:05Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - Toward Zero-shot Character Recognition: A Gold Standard Dataset with
Radical-level Annotations [5.761679637905164]
本稿では,ラジカルレベルのアノテーションと文字レベルのアノテーションの両方を含む古代中国語の文字画像データセットを構築する。
ACCIDの適応性を高めるため,トレーニングサンプルを増強するスプライシングベースの合成文字アルゴリズムを提案し,画像の画質向上のために画像デノナイズ手法を適用した。
論文 参考訳(メタデータ) (2023-08-01T16:41:30Z) - Bayesian Inverse Contextual Reasoning for Heterogeneous Semantics-Native
Communication [47.9462619619438]
エージェントが同じコミュニケーションコンテキストを共有しない場合、文脈推論の有効性が損なわれる。
本稿では,2つのベイズ推論手法を用いて,SNCにおけるCRの逆問題を解決するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-06-10T10:10:55Z) - User-Centric Evaluation of OCR Systems for Kwak'wala [92.73847703011353]
OCRを利用すると、文化的に価値ある文書の書き起こしに費やした時間を50%以上削減できることを示す。
この結果から,OCRツールが下流言語ドキュメントや再生作業において持つ潜在的なメリットが示された。
論文 参考訳(メタデータ) (2023-02-26T21:41:15Z) - Better Retrieval May Not Lead to Better Question Answering [59.1892787017522]
システムの性能を改善するための一般的なアプローチは、取得したコンテキストの品質をIRステージから改善することである。
マルチホップ推論を必要とするオープンドメインのQAデータセットであるStrategyQAでは、この一般的なアプローチは驚くほど非効率である。
論文 参考訳(メタデータ) (2022-05-07T16:59:38Z) - OCR Improves Machine Translation for Low-Resource Languages [10.010595434359647]
我々は,騒音に富んだ実データと合成データからなる新しいベンチマークであるtextscOCR4MTを導入し,公開する。
我々は、我々のベンチマークで最先端のOCRシステムを評価し、最も一般的なエラーを分析した。
次に,OCRエラーが機械翻訳性能に与える影響について検討する。
論文 参考訳(メタデータ) (2022-02-27T02:36:45Z) - Donut: Document Understanding Transformer without OCR [17.397447819420695]
我々は,OCRフレームワークを基盤にすることなく,エンドツーエンドのトレーニングが可能な新しいVDUモデルを提案する。
提案手法は,公開ベンチマークデータセットとプライベート産業サービスデータセットの各種文書理解タスクにおける最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-11-30T18:55:19Z) - Neural Model Reprogramming with Similarity Based Mapping for
Low-Resource Spoken Command Recognition [71.96870151495536]
低リソース音声コマンド認識(SCR)のための新しいAR手法を提案する。
ARプロシージャは、(対象領域から)音響信号を修正して、事前訓練されたSCRモデルを再利用することを目的としている。
提案したAR-SCRシステムについて,アラビア語,リトアニア語,マンダリン語を含む3つの低リソースSCRデータセットを用いて評価した。
論文 参考訳(メタデータ) (2021-10-08T05:07:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。